
v4 Signature SDK - API Overview

Contents

Contents
Signature SDK Overview

 Introduction
Signature Enabled Windows Application

Capture and Display Signature
Check Signature
Save Signature

Signature Enabled Internet Explorer Application
Document
Viewer
Capture and Display Signature
Check Signature
Save Signature

Wizard Control Signing Procedure
Capture and Display Signature
Scripting Features
Document Display

Signature SDK Overview

 Introduction

The Wacom Signature SDK includes a range of software components which were developed by the company Florentis Ltd., acquired by
Wacom in 2011. Until such time as full rebranding has been completed there will be some residual Florentis name references.
When integrated with an application, the Signature Components allow handwritten signatures to be captured from a pen tablet with the
signature data securely bound to a document. A captured signature can be displayed in the signed document providing a visual record
of the act of signing. The signature display is designed to give an error indication if the underlying document is changed in some way.
The programming interface of the Signature SDK consists of the following COM objects:

SigObj: encapsulates a captured handwritten signature, including raw pen data, context of capture, and a hash value of the
signed document. The SigObj is central to the SDK and the remaining COM object provide support for its creation and display.
Separate Wacom products can be used for forensic examination of the signature data (SignatureScope) or for comparison using
Static or Dynamic signature verification toolkits. API is not available to extract the raw pen data, to avoid the possibility of
forgery.

Licence: used to pass licence data to the other COM objects. The object is initialised with a licence text string which defines the
level of operations allowed for the signature controls. The SDK includes an evaluation licence which is replaced in a production
system by a company specific licence.

SigCtl: ActiveX control that provides the interface for creating and displaying a Signature object (SigObj).

SigCtlXHTML: extension of SigCtl providing automated document checking for Internet Explorer based HTML applications.

Hash: calculates a one-way hash ('message digest') of a data set, thus providing a unique and reliable 'digital fingerprint' of the
contents of a document or form.

Key: protects the integrity of data, thus providing a means of detecting any change to the original signature data.

ImgCtlXHTML: an AcriveX control that can be used to display a graphic image from an encoded text string.

DynamicCapture: provides the user interface for the capture of a handwritten signature and the creation of an associated
Signature object (SigObj)

eSeal: provides the user interface for the insertion of an ''eSeal" image, optional capture of a handwritten signature and the
creation of an associated Signature object. In some cultures, a stamp or seal, rather than a handwritten signature, is the
traditional way of endorsing a document; in other cases there may be situations where a tablet is not available but a signing
process is still required. The eSeal mechanism can be used in either of these cases to sign a document with an eSeal image and,

1.
2.
3.
4.

5.

optionally and if a tablet is available, a handwritten signature superimposed over the image.

WizCtl: the Wizard control provides a means of scripting the signing process using interactive displays on the signature tablet.

In a typical application the components will be used as follows:

Display the document with a signature control area (SigCtl)
Initialise the software licence
Create a Hash of the document contents
Call the signature capture function with the Hash
Save the signature data
On subsequent retrieval of a signed document, display it with the signature control area.
Retrieve the signature data and pass it to the Signature control to display the signature image
Recreate the Hash then check the document contents showing the signature as invalid if there has been a change.

For Internet Explorer applications the process can be simplified by using the extended signature control (SigCtlXHTML)

Display the HTML document with a signature control area (SigCtlXHTML)
Initialise the software licence
Call the signature capture function (a Hash of the HTML document is created automatically)
Insert the signature data into the HTML document
On subsequent retrieval of a signed document display it with the signature control area.
The document is automatically checked and the signature will be shown as invalid if there has been a change.

Signature Enabled Windows Application

Capture and Display Signature

Design the user interface of the application (eg a .Net Windows Form) so that it displays the data to be signed and displays the ActiveX
signature control (SigCtl).
For example, in Visual Studio use Tools…Choose Toolbox Items then add the .NET component Florentios.InteropAxFlSigCOM.dll (via
Browse...). The control can then be inserted in the form using the Toolbox.
The control will appear as an unsigned 'signature area':

Add code (activated by a user action such as clicking a button) to capture a signature and bind it to a message digest of the data set, as
follows:

Check that the data set is complete (ie. document has been correctly loaded or all mandatory input fields have been completed).
Create a Hash object and (repeatedly) use its 'Add' method to add all elements of the data set to the hash.
Determine the name of the signatory (user) and his or her reason for signing
Invoke the 'Capture' method of the DynamicCapture object, passing it the signatory name and the reason for signing and Hash
object.

5.

1.

2.

The 'Capture' method displays the Capture Window, as shown below. An attached tablet will be used to capture the user's
signature and bind it to the supplied Hash object, if any.
Pressing the 'OK' button will complete this operation and dismiss the window; pressing the 'Clear' button will clear all signature
'ink' from the window, if any is present; pressing the 'Cancel' button will dismiss the window without capturing a signature.
The 'OK' and 'Clear' buttons only become accessible (enabled) once signature 'ink' has been entered.)

Following capture, the control displays the signature:

Check Signature

Add code (activated by a user action such as clicking a button) to determine if the data set has been modified since it was signed, as
follows:

Create a Hash object and (repeatedly) use its 'Add' method to add all elements of the data set to the hash. The order in which
data set elements are added must be identical to the sequence used prior to capture.
Use the control's 'Signature' property to obtain a reference to its internal SigObj object in which is contained the signature data
itself. Invoke the 'CheckSignedData' method of SigObj, supplying the Hash object, in order to determine whether or not the data
set has been modified since it was signed. If a change is detected, the signature will be displayed crossed out. The application
can also inform the user of the result by means of a pop-up window, a text field, or similar.

Code can be added to check the integrity of the signature data in the control's SigObj object to ensure that it has not been modified
(whether maliciously or accidentally) by means of the object's 'CheckIntegrity' method. (For this to be possible, an application-defined
Key object must have been supplied when the signature was captured)

Save Signature

Code can be added to extract the signature data or other signature attributes by means of the properties of the control's SigObj object.
For example, to store the signature data in a database, access it using the object's 'SigData' and 'SigText' properties, which provide the
signature data in binary and text form respectively. (Conversely, these properties may be used to populate an unsigned signature
control with signature data retrieved from a database or from some other application and thus display the signature image in the
control.) Similarly, the object's 'When', 'Who' and 'Why' properties provide the time of signature capture, the signatory name and the
reason for signing respectively.

Signature Enabled Internet Explorer Application

Document

An HTML document to be signed is created, comprising a summary of all the pertinent information the signatory must confirm. Note
that the signable document is created after all the information has been collected; it should not provide any input fields or controls for
modifying the data.
The SigCtlXHTML ActiveX control is inserted wherever signatures are required in the document. Prior to signing the control will
appear as an unsigned 'signature area':

When binding the document contents to a signature, the control will only hash URLs of external files, not the resources to which they
point. This includes images, style sheets, script files and other HTML documents (within frames). From a legal point of view this is
highly unsatisfactory as the target files could change without being detected by the document binding. For this reason, fames and
external style sheet files should not be used in documents to be signed. (Script, as noted below, whether external or embedded, should
be avoided altogether.)
To allow images to be used the preferred approach is to bind the image data within the document and use the ImgCtlXHTML control to
display it when the document is loaded. This gives absolute binding between the signature and the full contents of the document.

A simple document with a single image and one unsigned signature control might appear as follows:

Viewer

Code is needed to control the interaction with the signature controls, for example to indicate that a signature is to be collected. This is
generally implemented in the form of javascript or VB script, but it is bad practice to put the operating code into the document itself.
Instead the document should be presented within an <iframe> tag in a 'viewer' HTML document. The containing document provides all
the controls needed to handle the document, including signing, interrogating and submitting the data. A simple viewer (which is
included with the SDK sample code) is illustrated below. Note that in this example the signing process is started by clicking on the
"Capture" button. Alternatively the viewer could be written such that the user clicks on the signature area before signing. Either way,
the document hash is automatically constructed for the document using the original html presented to the browser.

Note: script should not manipulate the content of the document to be signed (except through the use of the 'Markup' feature). In
particular, the dynamic insertion of signature controls in not supported.

Capture and Display Signature

When the 'Capture' button is clicked the Capture Window is displayed, as shown below. The dialog box shows the reason for signing
and the name of the person, both of which are set from the viewer scripting. The information displayed in the dialog box will also
appear on the tablet display.

Pressing the 'OK' button indicates that signing has been completed; the dialog will disappear and the signature image will be shown
within the signature area in the document.
Pressing the 'Clear' button will clear all signature 'ink' from the window, if any is present; pressing the 'Cancel' button will dismiss the

window without capturing a signature. The 'OK' and 'Clear' buttons only become accessible (enabled) once signature 'ink' has been
entered.)

Following capture, the control displays the signature:

Check Signature

Code in the Viewer can call the CheckDocument function for each signature; the SigCtlXHTML control creates the hash automatically
from the document contents. In any case, the signature area includes a tick-mark in the corner to indicate that the binding to the
document is correct. If the document is subsequently modified and loaded the signature(s) will all appear crossed out to indicate that
they have been invalidated.

Save Signature

Code can be added to extract the signature data or other signature attributes by means of the properties of the control's SigObj object.
It should be noted that the signature control displays signatures as they are captured but does not add the signature data to the
document. To embed the signature permanently in the document it is necessary to extract the data from the control and submit it to the
server where it can be inserted into the unsigned document as a param value.
For example, in the document a previously captured signature can be initialised with the SigObj text property and appear similar to this:

<object type="application/x-florentis-signature" style="width:55mm;height:
20mm">
 <param name="Signature"
 value="
RlNm5hZFAtB9QwEBFxEQTXIgV2lsbGlhbSBIYXllcxY0M0kgaGF2ZSByZWFkIGFuZCB1bmRlcnN
0
 ...
 ...
 AAA="/>
 </object>

Wizard Control Signing Procedure

Capture and Display Signature

The Wizard Control is specifically for the STU series of pen tablets and allows the user to be guided through a set of instruction pages
displayed on the signature tablet LCD display, each page requiring a selection by tapping the pen on the tablet surface, for example
selecting 'Next'.
The ActiveX control was originally developed for use in Internet Explorer, scripted by Javascript support code. If can, however, be used
in many other applications which support COM components and scripting. In a typical application the signing process follows the
sequence:

the client requests a document
the server creates the document and a dedicated Viewer page
the client views the document via the Viewer page

The Viewer page provides the controls and displays the document to be signed. It contains the JavaScript required to action the control
buttons as well as the Wizard Script which defines the signing process.
The Wizard control can also be used to configure the signature tablet to display a simple keyboard, such as a numeric keypad for
entering PIN code numbers.

Scripting Features

Each document can have its own set of rules for the signing process and these are assembled when the Viewer page is created on the
server. When the Viewer is opened by the client, the document is displayed and the signing process can begin.
Each step in the signing process contains:

Display Setup:draw the text and user controls on the Pad Display
Event Handler: response to user input on the tablet

The script can add a number of entities to the tablet display:

Text eg, instructions or explanations
Images can be passive (eg a company logo) or act like a button and respond to clicks
Buttonprocedure control (eg Next/Cancel)
Checkboxapplication options
Input PIN code input
Simple graphics lines, rectangles and ellipses

The script can, in addition, associate a signature control or signature object with the Wizard control. Captured signature data is then
saved to the control or object when an OK button is clicked.

Document Display

The sequence of screenshots below shows an example signing procedure using the Wizard control. A Viewer page displays the control
buttons and the document to be signed. In the screenshots, the Viewer support script has opted to reproduce the tablet display in a
popup window. The same displays also appear on the tablet LCD where user input is made with a pen.
The page is opened:

The wizard script controls the signing process by presenting a number of screens on the tablet, prompting for confirmation or selection
of options, leading to signature capture.

'Next' is pressed on the tablet:

The wizard script has changed the document display to focus on a specific section to review.
'Next' is pressed on the tablet and a screen with a checkbox is presented:

Checkboxes provide options for the signing process. Selected options can be transferred to the document or continuation of the
sequence can be prevented until a checkbox is ticked, eg if a confirmation is required.
'Next' is pressed on the tablet and the user signs:

'OK' is pressed to complete the process and the captured signature is displayed in a Signature control embedded in the document.

	v4 Signature SDK - API Overview

