
Signature Library - COM API
Introduction

The Signature Library includes a set of ActiveX components which provide the functionality for capturing and displaying signatures. This document
provides the information a developer needs to use the components.

Introduction
ActiveX Components

FlSigCOM
FlSigCapt
FlWizCom
FlSigCOM: SigObj

Summary
Methods

CheckIntegrity
CheckSignedData
Clear
GetProperty

Supported Property Names
Picture
ReadEncodedBitmap
RenderBitmap
RenderRect
SetProperty

Properties
Properties supported by GetProperty/SetProperty

FlSigCOM: SigCtl
Summary
Methods

AboutBox
Capture
GetProperty
SetProperty

Properties
Properties supported by GetProperty/SetProperty

Events
Click
DblClick
KeyDown
KeyPress
KeyUp
MouseDown
MouseMove
MouseUp

FlSigCOM: SigCtlXHTML
Summary
Methods

CheckHostDocument
CheckHostDocument2
InsertMarkup

Properties
Properties supported by GetProperty/SetProperty

Events
FlSigCOM: ImgCtlXHTML

Summary
Methods
Properties

FlSigCOM: Hash
Summary
Methods

Add
Clear

Properties
FlSigCOM: Key

Summary
Methods

Set
Properties

FlSigCOM: Enumeration Types
BorderStyle
CaptData
CaptureData

CaptureResult
DisplayMode
HashType
IntegrityStatus
KeyType
RBFlags
ReadEncodedBitmapResult
ShowText
SignedData
TimeZone

FlSigCapt
FlSigCapt: DynamicCapture

Summary
Methods

Capture
GetProperty
SetProperty

Properties
Properties supported by GetProperty/SetProperty

FlSigCapt: eSeal
Summary
Methods

Capture
GetProperty
SetProperty

Properties
Properties supported by GetProperty/SetProperty

FlSigCapt: Enumeration Types
DynamicCaptureResult
eSealCaptureMode
eSealCaptureResult
eSealHAlign
eSealVAlign

FlWizCom
FlWizCom: WizCtl

Summary
Methods

AddObject
AddObject(ObjectText)
AddObject(ObjectButton)
AddObject(ObjectCheckbox)
AddObject(ObjectRadioButton)
AddObject(ObjectSignature)
AddObject(ObjectInput)
AddObject(ObjectInputEcho)
AddObject(ObjectHash)
AddObject(ObjectImage)
AddObject(ObjectDisplayAtShutdown)
AddObject(ObjectInking)

AddPrimitive
Display
FireClick
GetObjectState
GetProperty
PadConnect
PadDisconnect
Reset
SetEventHandler
SetProperty

Properties
Properties supported by GetProperty/SetProperty

FlWizCom: InputObj
Summary
Methods

Clear
SetEncryption

Properties
FlWizCom: ObjectOptions

Summary
Methods

GetProperty
SetProperty

Properties
Properties supported by ObjectButton
Properties supported by ObjectInputEcho
Properties supported by ObjectRadioButton

FlWizCom: Enumeration Types
BorderStyle
ButtonOptions

CheckboxOptions
EncryptAlg
EventType
InputEchoOptions
MarkupStatus
ObjectType
PrimitiveOptions
PrimitiveType
TextOptions

Configuration (Registry Settings)
Signature Capture Dialog Settings
SigCom DLL Settings
SigCapt DLL Settings
WizCOM DLL Settings

Signature Data Encryption
Overview
Setting an Encryption Key
Key Generation using OpenSSL
Encryption Status

Signature ISO Format
Overview
Implementation
API
FlSigCOM: : AdditionalImportIsoData
FlSigCOM: ISO methods

ImportIsoData
ExportIsoData

ActiveX Components

FlSigCOM

Classes

SigObj

SigCtl

SigCtlXHTML

ImgCtlXHTML

Hash

Key

Enumerator Types

BorderStyle

CaptData

CaptureData

CaptureResult

DisplayMode

HashType

IntegrityStatus

KeyType

MarkupStatus

RBFlags

ReadEncodedBitmapResult

ShowText

SignedData

TimeZone

FlSigCapt

Classes

DynamicCapture

eSeal

Enumerator Types

DynamicCaptureResult

eSealCaptureMode

eSealCaptureResult

eSealHAlign

eSealVAlign

FlWizCom

Classes

WizCtl

InputObj

Enumerator Types

BorderStyle

ButtonOptions

CheckboxOptions

EncryptAlg

EventType

InputEchoOptions

ObjectType

PrimitiveOptions

PrimitiveType

TextOptions

FlSigCOM: SigObj

Summary

Method

CheckIntegrity

CheckSignedData

Clear

GetProperty

Picture

ReadEncodedBitmap

Render

RenderBitmap

RenderRect

SetProperty

Property

AdditionalData

CrossedOut

ExtraData

Height

Ink

IsCaptured

SigData

SigText

When

Who

Why

Width

The SigObj object encapsulates a captured handwritten signature. When populated it contains a wealth of data that fully describes both the static and
dynamic characteristic of a signature and the context in which the signature was captured. A Signature object can be bound (at the moment of capture) to
the host document or other data set to provide a means of determining whether or not any changes have been made subsequently, either maliciously or
unintentionally.

Methods

CheckIntegrity

Checks the integrity of the Signature object to detect whether it has been tampered with since signing.

IntegrityStatus CheckIntegrity(Key)

Parameters:

Key Optional Key object. If not supplied the code uses Key type MD5 by default.

Return Value: IntegrityStatus

IntegrityOK Data has not changed since signature capture

IntegrityFail Data has changed since signature capture

IntegrityMissing Signature integrity value not found

IntegrityWrongType Signature was captured using a different integrity check version

CheckSignedData

Checks for a match between a given hash and that provided when the signature was captured. If the signature is bound to a hash (ie. the What argument
of the DynamicCapture or SigCtl Capture method was set), then this function checks the signed data against that from which the supplied hash was
derived.
This method is called by SigCtlXHTML.CheckHostDocument() which supplies the necessary Hash.

SignedData CheckSignedData(Hash)

Parameters:

Hash Hash object, to be compared with that provided when the signature was captured.

Return Value: SignedData

DataGood The supplied hash matches that provided when the signature was captured, thus both Hash objects have been derived
from the same data set.

DataNoHash No hash was specified when the signature was captured (or the object does not contain a signature).

DataBadType The supplied hash is of a different type (HashType Enum) to that provided when the signature was captured.

DataBadHash The supplied hash value does not match that provided when the signature was captured, thus the two Hash objects
have been derived from different data sets.

Clear

Clears all signature data and thus reinitializes the Signature object.

Void Clear()

Parameters: none

Return Value: none

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

Supported Property Names

Return Value: SignedData

DataG
ood

The supplied hash matches that provided when the signature was captured, thus both Hash objects have been derived
from the same data set.

IsEncry
pted

No hash was specified when the signature was captured (or the object does not contain a signature).

CanEn
crypt

TRUE if a password or public key has been set. If the SigObj already contains sig data, or if it is subsequently set (via SigData,
SigText, Capture etc), it will be encrypted.

CanDe
crypt

TRUE if a password or private key has been set. Sig data encrypted (with the appropriate password or public key) can be set and will
be decrypted.

Picture

Renders an image of the signature, creating a Windows Picture object. Optionally encodes the signature data in the generated image using
steganographic techniques.

variant Picture(dimensionX, dimensionY, mimeType, inkWidth, nkColor, backgroundColor, paddingX, paddingY, flags)

Parameters

See RenderBitmap As RenderBitmap hardcoded for RenderOutputPicture

Return Value: variant function dependent

See RenderBitmap Picture returned as specified by Flags

ReadEncodedBitmap

Reads the encoded SigObj data from an image file, picture object, base-64 encoded string or binary data which was created using RenderBitmap().

ReadEncodedBitmapResult ReadEncodedBitmap(data)

Parameters

Data encoded signature data in one of the following formats:
String pathname of an image file or base-64 encoded string. Strings containing these characters are
assumed to be filenames:

 ':', '\' or '.'

Otherwise the string is assumed to be one of:

base-64 encoded image data
Picture Windows Picture object
Byte Array binary image data

Return Value: ReadEncodedBitmapResult

ReadEncodedBitmapOK The Signature data was decoded successfully

ReadEncodedBitmap-NotImage The Bitmap is not a supported image type

ReadEncodedBitmap-
SigDataNotFound

Encoded signature data was not found in image

RenderBitmap

Renders an image of the signature, creating an image file or returning the binary data. Optionally encodes the SigObj data in the generated image using
steganography.

variant RenderBitmap(outputFilename, dimensionX, dimensionY, mimeType, inkWidth, nkColor, backgroundColor, paddingX, paddingY, flags)

Parameters:

outputFilename Pathname of the file in which to save the image.
May be null or empty if output type specified by flags is not RenderOutputFilename.

dimensionX
dimensionY

Dimensions specified as DPI (dots per inch) or Pixels.

Negative value = DPI (the signature is not scaled)
Positive value = Pixels (the signature is scaled to fit the area)

mimeType Specifies the image format as one of:

image/bmp
image/tiff
image/png

inkWidth Specifies the signature ink width in mm

Signature ink and background colours in OLE_COLOR format

inkColor
inkBackground

paddingX
paddingY

Padding around the signature image, added to both the left and right for paddingX, and both the top and bottom for paddingY.
Dimensions are specified as mm or Pixels.

Negative value = mm
Positive value = Pixels

Flags A combination of RBFlags values. A single value from each mandatory group must be included:
Output Group (mandatory):

RenderOutputBase64Return base-64 encoded string
RenderOutputBinaryReturn bitmap as binary data
RenderOutputFilenameWrite bitmap to file
RenderOutputPictureReturn bitmap as Picture object

Colour selection Group (mandatory):

RenderColor1BPPRender 1 bit monochrome
RenderColor24BPPRender 24 bit pixel colour
RenderColor32BPPRender 32 bit pixel colour

Image format flags (optional):

RenderBackgroundTransparent Make background transparent (32 BPP only, to use the Alpha channel required for
transparency)
RenderColorAntiAliasRender colour image with antialiasing (24 and 32 BPP only)

Image extension (optional):

RenderEncodeData signature data within image
RenderWatermarkInclude watermark within image to indicate presence of encoded data

Other (optional):

RenderClippedCrop signature image, omitting any parts which were outside of the original capture window.
RenderRelativeRenders the signature image relative to the origin of the original capture window.
(Dimensions must be equal DPI (negative) values; padding values must be 0)

Return Value: variant function dependent

Filename No return value

Binary Byte array containing the image file contents

Base64 String containing base-64 representation of image file data

Picture Windows picture object (as an IDispatch interface pointer)

RenderRect

Renders an image of the signature within a given rectangle on a specified device context.

void RenderRect(hDCTarg, hDCRef, Left, Top, Right, Bottom, InkWidth, InkColor, Option, Zoom, Rotation)

Parameters:

hDCTarg Handle to output device context (as a LONG).

hDCRef Handle to reference device context (as a LONG). May be the same as hDCTarg.

Left, Top, Right, Bottom Integer values defining the bounding rectangle in which the signature is to be rendered.

InkWidth Float value specifying width, in mm, of pen used to draw signature.
Note that, for signatures captured on devices which record pressure, width varies to indicate pressure and also that
width scales with Zoom,

e.g. if InkWidth=0.7 and Zoom=200, actual width will be 1.4mm. (Optional, default value 0.7mm.)

InkColor OLE_COLOR value specifying colour of pen used to draw signature. (Optional, default is black.)

Option DisplayMode value specifying the scaling mode of the rendered signature, with possible values:

DspForceFit – scale signature to exactly fit the bounding rectangle
DspUseZoom – scale signature according to the Zoom argument

DspBestFit – reduce size of signature to fit area if it is too big,

Otherwise show at true size. (Optional , default is DspForceFit.)

Zoom Percentage by which the signature image is to be scaled. If 'Option' is DspForceFit then 'Zoom' is ignored.
If 'Option' is DspUseZoom and the value of 'Zoom' results in a signature larger than the given rectangle
then the signature image is not clipped. (Optional, default is 100%.)

Rotation Short value specifying the angle, measured anticlockwise in degrees, through which the signature image is to be
rotated.
(Optional, default is 0.)
Note: this parameter is currently ignored.

Return Value: none

SetProperty

Sets the value of a named additional property, overrides a value set in the registry.

void SetProperty(Name, Value)

Parameters:

Name String. Name of the property

Value Value to assign to property

Return Value:Boolean

True Name exists and value is valid

False Failed to set property

Properties

Property Type SigObj Property Description

AdditionalData
(CaptData)

Variant Returns additional data collected at capture time.
CaptData parameter is an Enum which specifies the capture related data to return, see Enumerator
Types for possible values.
Returns requested data as a string; or an empty variant if the object does not contain signature data,
or the signature data
does not include the requested type of data.
(Read-only)

CrossedOut Boolean Returns TRUE if the signature has been invalidated by changes to the document and appears crossed
out.
(Read-only)

ExtraData
(Key)

String ExtraData is a parameterized property that allows the client to store additional data within the
signature object after capture.
For example, if a signature is being manually validated the system may find it convenient to store the
result in the signature itself, rather than as an independent data item.
Each ExtraData item must be given an identifying key name and an associated value.
There can be only one value for each key and once written the key cannot be modified or removed.
All ExtraData key pairs are protected by the signature object integrity hash.
e.g. to set a new data item:
sig.ExtraData("Validation") = "Passed";
When the property is read: =sig.ExtraData("");
all values are returned in a single string in the format:
"key=value;key=value;"

Height Int Returns the height of the bounding rectangle of the signature in 0.01mm units.
Returns 0 if the object does not contain signature data.
(Read-only)

Ink String Signature data in a form compatible with the ActiveX interface of CIC InkTools, thus allowing
interoperation between the Signature Component and CIC InkTools.
Signature data may be exchanged by copying the string value to and from a CIC Ink control via its
Ink property.

IsCaptured Boolean Returns True if the object contains signature data.
Note that IsCaptured = True does not necessarily imply that the When, Who and Why properties are

valid.
In some circumstances they may be invalid even though the Signature object contains valid signature
data.
For example, this will be the case if the signature data has been imported from a CIC Ink control via
the Ink property.
(Read-only)

SigData Variant (containing
 Byte())

Binary signature data as an array of bytes.
May be used to save the signature data to and restore it from a file or database.

SigText String Binary signature data as a string, base-64 encoded or hexadecimal.
On Read the format is determined by the get_SigText registry setting

When(TimeZone) DateTime Returns the time & date of signature capture.
Returns 0 if the object does not contain signature data, or the signature data does not contain the
time of capture
(e.g, if the object was initialized using the Ink property).

TimeZone parameter is an Enum which specifies the time-zone to use (local time or GMT/UTC),
see Enumerator Types for possible values.
Default = 'TimeLocal'.
(Read-only)

Who String Returns the name of signatory, as specified at time of signature capture.
Returns an empty string if the object does not contain signature data, or the signature data does not
contain a signatory name
e.g, if the object was initialized using the Ink property).
(Read-only)

Why String Returns the reason for signing, as specified at time of signature capture.
Returns an empty string if the object does not contain signature data, or the signature data does not
contain a reason for signing
e.g, if the object was initialized using the Ink property.
(Read-only)

Width Int Returns the width of the bounding rectangle of the signature in 0.01mm units.
Returns 0 if the object does not contain signature data.
(Read-only)

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

Licence Get/Set String String containing the license used for signature capture

Component_FileVersion Get String Component version e.g. "4.5.2.210"

Complexity Get Double Signature complexity between 0..1 e.g. 0.5343597732

ExtraDataIntegrity Get/Set KeyType KeyType used to verify integrity of ExtraData

Integrity_CAPICOM_
ICertificates

Get Certificates If the signature was captured with a Key of KeyType KeyCAPICOM, returns a
collection of (one or more)
Certificate objects

Integrity_KeyType Get KeyType KeyType used in signature capture

RenderClipped Get/Set Boolean True to clip the output to what was seen within the capture window

SignedData_HashType Get HashType HashType enumerator used by the hash object

UILanguage Get/Set String Selects the language used in the signature capture dialog from:
 de, el, en, es, fr, it, ja, ko, nl, pl, pt-BR, ru, zh-CN, zh-TW

The codes conform to the ISO language codes expanded here:
 http://www.lingoes.net/en/translator/langcode.htm

The codes match the language folders installed as part of the Signature SDK in:

C:\Program Files (x86)\Common Files\WacomGSS

To select a language, set the property value to a language code, e.g.
obj.setProperty("UILanguage", "it");

The language code is not case-sensitive.

Where Get String Returns the location at which the signature was captured
(if set DynamicCapture.SetProperty)

For the following values see the section Signature Data Encryption

http://www.lingoes.net/en/translator/langcode.htm

IsEncrypted Get Boolean TRUE if the SigObj contains encrypted signature data which has not (yet) been
decrypted.

CanEncrypt Get Boolean TRUE if a password or public key has been set.
If the SigObj already contains sig data, or if it is subsequently set (via
SigData, SigText, Capture etc) it will be encrypted.

CanDecrypt Get Boolean TRUE if a password or private key has been set.
Sig data encrypted (with the appropriate password or public key) can be set and
will be decrypted.

EncryptionPassword Set String String containing symmetric encryption key

EncryptionPublicKey Set String String containing asymmetric public key

EncryptionPublicKeyFile Set String String containing asymmetric public key filename

EncryptionPrivateKey Set String String containing asymmetric private key

EncryptionPrivateKeyFile Set String String containing asymmetric private key filename

FlSigCOM: SigCtl

Summary

Method

AboutBox

Capture

GetProperty

SetProperty

Property

AppData

BackColor

BackStyle

BorderColor

BorderStyle

BorderVisible

BorderWidth

Caption

CtlPadding

DisplayMode

Enabled

Font

ForeColor

InkColor

InkWidth

InputData

InputSignature

InputWho

InputWhy

Licence

Rotation

ShowWhen

ShowWho

ShowWhy

Signature

TabStop

WhenFormat

Zoom

Event

Click

DblClick

KeyDown

KeyPress

KeyUp

MouseDown

MouseMove

MouseUp

PostCapture

PreCapture

Remove

Note that SigCtlXHTML extends this class and includes common methods and properties

Methods

AboutBox

Displays an About Box for the control. The dialog box will display version, licensing and contact information:

Void AboutBox()

Parameters:none

Return Value: none

Capture

This method is deprecated; the DynamicCapture object should instead be used.

Displays a Signature Capture Window in which a user may sign his or her name using a digitizing tablet. The window contains three buttons by which the
user can either clear the currently rendered signature (Clear button) or dismiss the window without capturing a signature (Cancel button) or dismiss the
window and capture the currently rendered signature (OK button).

CaptureResult Capture(Who, Why, What, Key)

Parameters:

Who String specifying the signatory name.
Optional if InputWho property is set

Why String specifying the reason for signing.
Optional if InputWhy property is set

What Hash object
Derived from the data set with which the captured signature is to be bound.
Typically the data set will be the contents of the document or form signed by the user.
SigCtlXHTML: The hash is generated automatically from the contents of the XHTML document and cannot be
supplied here.
(Optional)

Key Key object supplied in order to detect malicious or accidental tampering with the signature object or the
signature data it contains.
SigCtlXHTML: Key type SHA256 is supplied automatically but an alternative can be specified.
(Optional)

Return Value: CaptureResult

CaptureOK Signature captured successfully.

CaptureCancel Signature not captured because user cancelled Signature Capture Window.

CapturePadError No capture service available; typically, no functioning digitizing tablet or other device for capturing signatures
found.

CaptureNotLicensed The component has not been licensed to perform capture.
This may be because a suitable licence has not been set or because a condition of the licence has not been
met.
For example, if no suitable hardware was found.

CaptureError System error or some other unusual error condition.

CaptureAbort Signature not captured because the handler for the PreCapture event returned False.
With SigCtlXHTML, this can indicate a failure to parse document contents

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

SetProperty

Sets the value of a named additional property, overrides a value set in the registry.

void SetProperty(Name, Value)

Parameters:

Name String. Name of the property

Value Value to assign to property

Return Value:Boolean

True Name exists and value is valid

False Failed to set property

Properties

Property Type SigCtl Property Description

AppData(Key) Variant Application data identified by Key

Parameterised property supporting key/value pairs for the storage of any application specific data.
For example, may be used to store a signatory name and reason for signing in the control prior to
the signature being captured.
The Key may be an integer or string e.g. two separate keys:

sig.AppData(0)="a"
sig.AppData("0")="b"

AppData may be initialised in XHTML using the AppData param name, e.g.
<param name="AppData" value="key1=value1;key2=value2;etc=etc"/>

BackColor OLE_COLOR Colour of control (Signature Area) background.
Default = background colour of container if available, or colour of system window.

BackStyle Int Used to determine whether the control is transparent or opaque.

0 = Opaque
1 = Transparent

Default: Opaque

BorderColor OLE_COLOR Colour of control (Signature Area) border if 'BorderStyle' is 'flat'.
Ignored for other values of 'BorderStyle'.
Default = colour of system window frame.

BorderStyle Int Style of control (Signature Area) border.
While any long value can be set, the BorderStyle enumerator includes the most useful values.
Default = 0 (BdrFlat)

BorderVisible Boolean Shows or hides the control (Signature Area) border: True is visible, False is not visible.
Default = True

BorderWidth Int Width in pixels of control (Signature Area) border if 'BorderStyle' is 'flat'. Ignored for other
values of 'BorderStyle'.
Default = 1

Caption String Text centrally displayed in the control (Signature Area) when no signature has been captured
as an alternative to the default signature guideline.
Default = Empty string

CtlPadding Short Size, in pixels, of space between the border of the control (Signature Area) and the bounding
rectangle of the rendered signature if 'DisplayMode' is 'DspForceFit'.
Ignored if 'DisplayMode' is 'DspUseZoom'.
Default = 2

DisplayMode DisplayMode (Enum) Specifies scaling mode of rendered signature, with possible values:

DspForceFit scale signature to exactly fit the control (Signature Area).
DspUseZoom scale signature (relative to its actual size) according to the 'Zoom' property.
DspBestFit reduce signature to fit in box if too big, otherwise show at true size.

In each case, the image is centred in the control.
If scaling is chosen and the value of the 'Zoom' property results in an image larger than the
control area, it will be clipped.
Default = 'DspForceFit'.

Font IFontDisp Font used to display the Caption property (if set) and the When/Who text
(see ShowWhen & ShowWho properties).
Default = container font, if available, or 8 point MS Sans Serif.

ForeColor OLE_COLOR Colour of the default signature guideline or (if set) the Caption property text, and the colour
of any When/Who text displayed in the Signature Area (see ShowWhen & ShowWho properties).
Default = foreground colour of container, if available, or system window text colour.
Note: the colour of the rendered signature is controlled independently by the InkColor property.

InkColor OLE_COLOR Colour of 'ink' used to render signature image.
Default = system window text colour

InkWidth Float Width, in mm, of 'ink' used to render signature image.
Default = 0.7mm
Note:

min = 0.1mm
max = 2.0 mm
scales with signature
varies with pressure (if pressure data is available)

InputData String Allows supplementary data to be stored in the signature.
The data is defined in the form of "key=value" pairs separated by ';'
e.g. "Account=12345;Branch=AB12"
When the signature is captured the InputData values are transferred and become available as the
ExtraData in the ISigObjXHTML interface.
Key values can be changed by re-setting the parameter, and can be cleared by setting the value
to a blank string.

InputSignature String Binary Signature SigObj data, base-64 encoded or as a string of hexadecimal digits.
On Read the format is determined by the get_SigText registry setting

InputWho String Used to pre-set the name of the person who is to sign.
This value is then used if the 'Who' parameter in the Capture method is not defined.

InputWhy String Used to pre-set the reason for signing text. This value is then used if the 'Why' parameter in the
Capture method is not defined.

Licence Variant Licence object or string

Rotation Short Drawing angle.
Note: Signature rotation is not currently supported. Setting any value other than 0 will cause an error.

ShowWhen ShowText (Enum) Specifies whether and how to display time of signing within the Signature Area.
See Enumerator Types for possible values.
Default = 'TxtDontShow'
Note: the entire area of the control is used to render the signature image, thus it is possible for
the When text to be overwritten.

ShowWho ShowText (Enum) Specifies whether and how to display signatory name within the Signature Area.
See Enumerator Types for possible values.
Default = 'TxtDontShow'
Note: the entire area of the control is used to render the signature image, thus it is possible for the
Who text to be overwritten.

ShowWhy ShowText (Enum) Specifies whether and how to display the reason for signing text within the Signature Area.
See Enumerator Types for possible values.
Default = 'TxtDontShow'
Note: the entire area of the control is used to render the signature image, thus it is possible for
the Why text to be overwritten.

Signature SigObj Signature object created by the Signature control.
The SigCtl owns the SigObj – both are generally created and destroyed together.
However, the SigCtl may be outlived by the SigObj if the client application retains an
outstanding object reference.
Property put is by value, rather than by reference, so that an assignment in Visual Basic takes
the form:
 SigCtl.Signature = SigObj
rather than:
 Set SigCtl.Signature = SigObj

However, the converse assignment takes the form:
 Set SigObj = SigCtl.Signature

WhenFormat String Format used to display time of signing (a Win32-style date/time format string).
Default = HH':'mm dd MMM yyyy

Zoom Short Scaling factor (expressed as a percentage of actual size) for rendering the signature image when
'DisplayMode' is 'DspUseZoom'. Ignored if 'DisplayMode' is 'DspForceFit'.
Default = 100

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

Licence Get/Set String String containing the license used for signature capture

Component_FileVersion Get String Component version e.g. "4.5.2.210"

DisablePropertyChange
PostCapture

Get/Set Boolean Disables changing control properties after a signature has been captured

ShowWhere Get/Set ShowText Specifies whether and how to display the location of signing within the Signature
Area.
See Enumerator Types for possible values.

UILanguage Get/Set String Selects the language used in the signature capture dialog from:
For details (see SigObj properties

hWnd Get/Set Variant Windows handle used to display the control

Events

Click

Occurs when the user clicks (presses and then releases) a mouse button over a SigCtl

Private Sub object_Click()

Parameters:none

Return Value: none

DblClick

Occurs when the user double-clicks a mouse button over a SigCtl

Private Sub object_DblClick()

Parameters:none

Return Value: none

KeyDown

Occurs when the user presses a key while a SigCtl has the focus.

Private Sub object_KeyDown(KeyCode, Shift)

Parameters:

KeyCode Short integer code for the key pressed. KeyCode is passed by reference;
changing it sends a different code to the control (however the control does not process key presses so this has no effect).

Shift Short integer bit field indicating the state of the SHIFT (bit 0), CTRL (bit 1) and ALT (bit 2) keys at the time of the event.
These bits correspond to the values 1, 2 and 4 respectively.
Some, all or none of the bits can be set, indicating that some, all or none of the keys are down.

Return Value: none

KeyPress

Occurs when the user presses and releases an ANSI key while a SigCtl has the focus.

Private Sub object_KeyPress(KeyAscii)

Parameters:

KeyAscii A short integer that returns a standard numeric ANSI keycode. KeyAscii is passed by reference;
changing it sends a different character to the control (however the control does not process key presses so this has no effect).

Return Value: none

KeyUp

Occurs when the user releases a key while a SigCtl has the focus.

Private Sub object_KeyUp(KeyCode, Shift)

Parameters:

KeyCode Short integer code for the key released.
KeyCode is passed by reference;
changing it sends a different code to the control, however the control does not process key presses so this has no effect.

Shift Short integer bit field indicating the state of the SHIFT (bit 0), CTRL (bit 1) and ALT (bit 2) keys at the time of the event.
These bits correspond to the values 1, 2 and 4 respectively.
Some, all or none of the bits can be set, indicating that some, all or none of the keys are down.

Return Value: none

MouseDown

Occurs when the user presses a mouse button over a SigCtl.

Private Sub object_MouseDown(Button, Shift, X, Y)

Parameters:

Button Short integer that identifies the button that was pressed.
The button argument is a bit field with bits corresponding to the left button (bit 0, value = 1), right button (bit 1, value = 2), and
middle button (bit 2, value = 4).
Only one of the bits is set, indicating the button that caused the event.

Shift Short integer bit field indicating the state of the SHIFT (bit 0), CTRL (bit 1) and ALT (bit 2) keys at the time of the event.
These bits correspond to the values 1, 2 and 4 respectively.
Some, all or none of the bits can be set, indicating that some, all or none of the keys are down.

X, Y Current coordinates of the mouse pointer.

Return Value: none

MouseMove

Occurs when the user moves the mouse over a SigCtl.

Private Sub object_MouseMove(Button, Shift, X, Y)

Parameters:

Button Short integer that corresponds to the state of the mouse buttons in which a bit is set if the button is down.
The button argument is a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2).
It indicates the complete state of the mouse buttons;
some, all, or none of these three bits can be set, indicating that some, all, or none of the buttons are pressed

Shift Short integer bit field indicating the state of the SHIFT (bit 0), CTRL (bit 1) and ALT (bit 2) keys at the time of the event.
These bits correspond to the values 1, 2 and 4 respectively.
Some, all or none of the bits can be set, indicating that some, all or none of the keys are down.

X, Y Current coordinates of the mouse pointer.

Return Value: none

MouseUp

Occurs when the user releases a mouse button over a SigCtl.

Private Sub object_MouseUp(Button, Shift, X, Y)

Parameters:

Button Short integer that identifies the button that was released.
The button argument is a bit field with bits corresponding to the left button (bit 0, value = 1), right button (bit 1, value = 2),
and middle button (bit 2, value = 4).
Only one of the bits is set, indicating the button that caused the event.

Shift Short integer bit field indicating the state of the SHIFT (bit 0), CTRL (bit 1) and ALT (bit 2) keys at the time of the event.
These bits correspond to the values 1, 2 and 4 respectively.
Some, all or none of the bits can be set, indicating that some, all or none of the keys are down.

X, Y Current coordinates of the mouse pointer.

Return Value: none

FlSigCOM: SigCtlXHTML

Summary

Method

(as SigCtl)

CheckHostDocument

CheckHostDocument2

GetProperty

InsertMarkup

SetProperty

Property

(as SigCtl)

Printer

Event

(as SigCtl)

Extends SigCtl, the additions are indicated below.

Methods

CheckHostDocument

Recalculates the document hash to determine whether any changes have been made since signing. The methods call SigObj.CheckSignedData with the
necessary Hash data.

SignedData CheckHostDocument()

Parameters:none

Return Value:SignedData

DataGood The document has not been changed since signing

DataNoHash Signature has not been captured, or the hash was not calculated

DataBadType Signature was captured using a different type of hash

DataBadHash The document hash has changed since signing

DataError An error occurred while calculating the hash

CheckHostDocument2

Recalculates the document hash and compares it with a value stored within the HTML document itself, eg:
<!-- DocHash:081726885B7A342A74 -->
The hash is inserted by a Wacom HTML converter component and is used to check that documents are not changed prior to signing.

SignedData CheckHostDocument2()

Parameters:none

Return Value:SignedData

DataGood The document has not been changed since signing

DataNoHash Signature has not been captured, or the hash was not calculated

DataBadType Signature was captured using a different type of hash

DataBadHash The document hash has changed since signing

DataError An error occurred while calculating the hash

InsertMarkup

Inserts text into an HTML element. Only plain text will be allowed. It will be assigned to the innerText property of the element. The HTML element must be
empty (contain no text or child elements) and the control must not contain a captured signature.
Application Notes:
If a signature with associated markup is re-captured, markup will be removed from the document and lost. In order to re-capture with markup, first clear the
signature and re-insert markup.
Attempting to insert markup into an element that does not exist or is not empty, or calling the method on a control that contains a signature will result in an
exception being thrown in JavaScript.

Void InsertMarkup(Id, Text)

Parameters:

Id String specifying the id of an HTML element in which to insert text.

Text Text to insert.

Return Value: none

Properties

Property Type SigCtlXHTML Property Description

See SigCtl Properties

Printer PrintObj Creates and returns a PrintObj object. Deprecated.
(Read-only)

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

As SigCtl supported properties with the modification:

Document_HashType Get HashType The HashType used for hash creation prior to signature capture.
Only supported in SigCtlXHTML

DisablePropertyChange
PostCapture

Not supported in SigCtlXHTML

Events

As SigCtl

FlSigCOM: ImgCtlXHTML

Summary

Method

(none)

Property

ImageBase64

ImageHex

Licence

ResizeToImage

The ImgCtlXHTML object is used to allow graphics images to be embedded within HTML documents as data instead of being referenced by URLs to
external files.
Images may be in a wide range of graphics formats, including PNG, GIF, TIFF, JPEG and BMP.
The image should be encoded using either Hex or Base64 strings. Base64 is preferred because it is more compact.

The image data is embedded in the document by specifying the Class ID of the control and providing the encoded image data, e.g.

<object classid="clsid:EFFD1818-3060-49a3-9C22-A06F57BBC167">
 <param name="ImageBase64" value="R0lGO.....hXBWwICAD"/>
</object>

 In this example the majority of the image data has replaced with "….." for clarity.

Methods

None

Properties

Property Type ImgCtlXHTML Property Description

ImageBase64 String Sets or gets the image text in Base64 format

ImageHex String Sets or gets the image text in hex format

Licence Variant Licence object or string

ResizeToImage Boolean Write
Enable control resize on image change

FlSigCOM: Hash

Summary

Method

Add

Clear

Property

Hash

Type

The Hash object is used to calculate a one-way hash, the value of which is a fixed length 'string', from an arbitrary length data set. This is often referred to
as calculating the 'message digest' of a 'message'. The data set will typically be the contents of a document or form, in which case the hash value will be a
unique and reliable 'digital fingerprint' of the contents.
To be secure, the algorithms used to calculate hash values must be such that it is not possible to forge a data set in order to yield a given hash value. Two
of the most widely used and secure hash algorithms are MD5 (which produces a 128-bit hash value) and SHA (which produces a 160-bit hash value). The
latter has been adopted as a Federal Information Processing Standard.

Methods

Add

Adds a data item to the data set from which the hash value is calculated. When an item is added the Hash property is automatically updated with the new
value of the one-way hash.

void Add(Data)

Parameters:

Data Variant containing the data item to add. Most automation compatible data types may be added to the data set including
the
following types:
boolean, Byte, Byte(), Currency, Date, Double, Integer, Long, Single, String.
Attempting to add an unsupported data type results in a run-time error

Return Value:none

Clear

Clears the current data set from the Hash object, thus resetting the object for the calculation of a new hash value.

void Clear()

Parameters:none

Return Value:none

Properties

Property Type Hash Property Description

Hash String Returns the current hash value as a "string".
Note: this property is used internally by the component and is not intended for use by the
client programmer.
(Read-only)

Type HashType (Enum) Gets and sets type of hash algorithm used. See Enumerator Types for possible values.
May be set only if a Hash object contains no data. An attempt to set Type after data has been
added will result in an error.
Default = 'HashNone',
therefore the Type must be reset to a defined algorithm prior to using Hash object.

http://csrc.nist.gov/fips/

FlSigCOM: Key

Summary

Method

Set

Property

Type

The Key object is used for protecting the integrity of data ('message authentication'), such as protecting signature data from malicious or accidental
tampering. Supported key types include a simple MD5-based key and a more secure Message Authentication Code (MAC) key derived from MD5. The
latter requires an application defined key value – a 'password string', which (for security reasons) is best stored in a separate file or input by the user at run-
time and not hard-coded in the application itself.

Methods

Set

Initializes the Key by setting its type and, optionally, initialization value.

void Set(Type, Value)

Parameters:

Type KeyType Enum specifying the type of key.

Value Value to use to initialize key. Must be omitted for key types KeyNone and KeyMD5.
For KeyMD5MAC must be either a 16 byte array (BYTE(16) in VB) or a 16 character string.
Note that the (Unicode) string is converted to multibyte, so only those characters that convert to a single byte should be
used. (Optional)

Return Value:none

Properties

Property Type Key Property Description

Type KeyType (Enum) Gets type of key. See Enumerator Types for possible
values.

Default = 'KeyNone'.
(Read-only)

FlSigCOM: Enumeration Types

BorderStyle

Specifies the style of border drawn around a signature control

Name Value Description

BdrFlat 0 Solid border

BdrRaised 5 2-pixel wide, 3-d border giving the control the appearance of being raised above its background

BdrEtched 6 2-pixel wide, 3-d border with the appearance of a sunken edge.

BdrBump 9 2-pixel wide, 3-d border with the appearance of a raised edge.

BdrSunken 10 2-pixel wide, 3-d border giving the control the appearance of being sunken into its background

CaptData

Used to select what data is returned by the SigObj.AdditionalData property

Name Value Description

CaptDigitizer 26 Identifying information for the digitizer pad

CaptDigitizerDriver 27 Identifying information for the digitizer pad driver software

CaptMachineOS 28 Identifying information for computer operating system

CaptNetworkCard 29 Identifying information for network card

CaptureData

Return values for legacy SigCtlXHTML Capture method. Obsolete

CaptureResult

Returned by the Capture methods of the SigCtrl & SigCtrlXHTML.

Name Value Description

CaptureOK 0 Signature captured successfully.

CaptureCancel 1 Signature not captured because user cancelled Signature Capture Window.

CapturePadError 100 No capture service available; typically, no functioning digitizing tablet or other device for
capturing signatures found.

CaptureError 101 System error or some other unusual error condition.

CaptureIntegrityKeyInvalid 102 The integrity key parameter is invalid (obsolete)

CaptureNotLicensed 103 The component has not been licensed to perform capture.
This may be because a suitable licence has not been set or because a condition of the licence has
not been met, for example required hardware, such as a particular tablet type, was not found.

CaptureAbort 200 Signature not captured because the handler for the PreCapture event returned False.
With SigCtlXHTML, this can indicate a failure to parse document contents

DisplayMode

Specifies the method used to draw a signature within a signature control and by the RenderRect method

Name Value Description

DspForceFit 0 Scale signature to fit the area

DspUseZoom 1 Use the Zoom property/parameter to scale the signature relative to actual size.

DspBestFit 2 Reduce size of signature to fit display area if it is too big, but otherwise show at true size.

HashType

Specifies the hashing algorithm used by the Hash object.

Name Value Description

HashNone 0 No hashing algorithm selected

HashMD5 1 MD5 hashing algorithm

HashSHA1 2 SHA-1 hashing algorithm

HashSHA224 3 SHA-224 hashing algorithm

HashSHA256 4 SHA-256 hashing algorithm

HashSHA384 5 SHA-384 hashing algorithm

HashSHA512 6 SHA-512 hashing algorithm

IntegrityStatus

Returned by the CheckIntegrity method of the SigObj interface.

Name Value Description

IntegrityOK 0 Data has not changed since signature capture

IntegrityFail 1 Data has changed since signature capture

IntegrityMissing 2 Signature integrity value not found

IntegrityWrongType 3 Signature was captured using a different integrity check version

IntegrityInsufficientData 4 MD5MAC key value is required in order to check integrity

IntegrityUncertain 5 Unable to check integrity. Obsolete

IntegrityUnsupported 6 Integrity type not supported on the current platform

KeyType

Specifies the type of a Key object

Name Value Description

KeyNone 0 No key type set

KeyMD5 1 MD5 key

KeyMD5MAC 2 MD5 MAC key

KeySHA1 3 SHA-1 key

KeySHA224 4 SHA-224 key

KeySHA256 5 SHA-256 key

KeySHA384 6 SHA-384 key

KeySHA512 7 SHA-512 key

RBFlags

Bitmask flags supplied to RenderBitmap to select the required options

Name Value Description

RenderOutputBase64 0x002000 Return bitmap as a base-64 encoded string

RenderOutputBinary 0x000800 Return bitmap as binary data

RenderOutputFilename 0x001000 Write bitmap to file

RenderOutputPicture 0x200000 Return bitmap as Picture object

RenderBackground Transparent 0x010000 Render image with a transparent background

RenderColor1BPP 0x020000 Render using 1 bit-per-pixel (monochrome)

RenderColor24BPP 0x040000 Render colour image with 24 bits-per-pixel

RenderColor32BPP 0x080000 Render colour image with 32 bits-per-pixel

RenderColorAntiAlias 0x100000 Render colour image with antialiasing

RenderEncodeData 0x400000 Encode signature data within image

RenderWatermark 0x800000 Encode watermark within image

RenderClipped 0x1000000 Crop signature image, omitting any parts which were outside of the
original capture window.

RenderRelative 0x2000000 Renders the signature image relative to the origin of the original capture
window

ReadEncodedBitmapResult

Result returned by the ReadEncodedBitmap method

Name Value Description

ReadEncodedBitmapOK 0 Signature data decoded OK

ReadEncodedBitmapFileNotFound 1 File not found

ReadEncodedBitmapNotImage 2 Bitmap is not a supported image type

ReadEncodedBitmapSigDataNotFound 3 Encoded signature data not found in image

ShowText

Used to specify if and how "act of signing" information (who signed and/or when) is displayed within the control.

Name Value Description

TxtDontShow 0 Don't display the information

TxtShowLeft 1 Display the information left aligned within the control

TxtShowCenter 2 Display the information centred within the control

TxtShowRight 4 Display the information right aligned within the control

SignedData

Returned by the CheckSignedData method of the SigObj interface.

Name Value Description

DataGood 0 Data has not changed signature capture

DataNoHash 1 No signature captured, or signature was captured without a hash

DataBadType 2 Signature was captured with a different type of hash

DataBadHash 3 Data has changed since signature capture

DataError 4 Error whilst checking signed data

DataUncertain 5 Unable to check status of data. Obsolete

DataSigMoved 6 The position of the SigCtlXHTML control within the HTML document has been changed

TimeZone

Used to select time zone for time returned by 'When' parameter

Name Value Description

TimeLocal 0 Local time when signature was captured

TimeGMT 1 Greenwich Mean Time

TimeUTC 1 Universal Coordinated Time (synonym for TimeGMT)

FlSigCapt

FlSigCapt: DynamicCapture

Summary

Method

Capture

GetProperty

SetProperty

Property

Licence

The DynamicCapture object provides the user interface for the capture of a signature.

Methods

Capture

Displays a Signature Capture Window in which a user may sign his or her name using a suitable digitizing tablet. The window contains three buttons by
which the user can either clear the currently rendered signature (Clear button) or dismiss the window without capturing a signature (Cancel button) or
dismiss the window and capture the currently rendered signature (OK button).

DynamicCaptureResult Capture(SigCtl, Who, Why, What, Key)

Parameters:

SigCtl SigCtl or SigCtlXHTML object

Who String specifying the signatory name.
Optional if InputWho property of SigCtl is set

Why String specifying the reason for signing.
Optional if InputWhy property is set

What Hash object
Derived from the data set with which the captured signature is to be bound. Typically the data set will be the
contents of the document or form signed by the user.
SigCtlXHTML: The hash is generated automatically from the contents of the XHTML document and cannot
be supplied here.
(Optional)

Key Key object
supplied in order to detect malicious or accidental tampering with the signature object or the signature data
it contains.
SigCtlXHTML: Key type SHA-256 is used automatically but an alternative can be specified.
(Optional)

Return Value:DynamicCaptureResult

DynCaptOK Signature captured successfully.

DynCaptCancel Signature not captured because user cancelled Signature Capture Window.

DynCaptPadError No capture service available; typically, no functioning digitizing tablet or other device for capturing
signatures found.

DynCaptError System error or some other unusual error condition.

DynCaptAbort Signature not captured because the handler for the PreCapture event returned False. With SigCtlXHTML, this
can indicate a failure to parse document contents

DynCaptNotLicensed The component has not been licensed to perform capture. This may be because a suitable licence has not
been set or because a condition of the licence has not been met, for example required hardware, such as a
particular tablet type, was not found.

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

SetProperty

Sets the value of a named additional property, overrides a value set in the registry.

void SetProperty(Name, Value)

Parameters:

Name String. Name of the property.

Value Value to assign to property:

Return Value:Boolean

True Name exists and value is valid

False Failed to set property

Properties

Property Type DynamicCapture Property Description

Licence String The license object or string

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

Licence Get/Set String String containing the license used for signature capture

Component_FileVersion Get String Component version e.g. "4.5.2.210"

UILanguage Get/Set String Selects the language used in the signature capture dialog from:
For details (see SigObj properties

Where Get/Set String Specifies the location of signing.
The string is displayed in the signature capture dialog and saved in the signature data

CaptureInkColor Get/Set String Color of 'ink' used to render the signature image as a comma separated decimal RGB
value.
e.g. for Blue:
setProperty("CaptureInkColor", "0,0,1")
Individual color values are in the decimal range 0.0 to 1.0, factoring the RGB maximum
of 255
e.g. 0.0 for 0, 0.5 for 127, 1.0 for 255

CaptureInkWidth Get/Set String Decimal Width, in mm, of 'ink' used to render the signature image.
Default = 0.7mm
Note:

min = 0.1mm
max = 2.0 mm
scales with signature
varies with pressure (if pressure data is available)

CaptureExtentX Get/Set DWORD Sets width of the capture area in pixels. If not set, the size of the capture area is
determined by the size of the digitizer.
If this value is set, CaptureExtentY must also be set.

CaptureExtentY Get/Set DWORD Sets height of the capture area in pixels. If not set, the size of the capture area is
determined by the size of the digitizer.
If this value is set, CaptureExtentX must also be set.

ButtonLocation Get/Set Location of buttons in the capture window:

0 - Outside the capture area
1 - Inside the capture area
2 - Hidden (not shown)

LicenceString Get String License name, extracted from license string (if set)

stuPort Get/Set String Com port for serial interface e.g. "COM6"

stuBaudRate Get/Set DWORD Serial linespeed e.g. 128000

The following values are for use with the STU-540 device.
For details see:
https://developer-docs.wacom.com/display/DevDocs/STU-540+-+Signature+Screen+Upload

stuDisableSerialEncryption Get DWORD Any images uploaded to the STU will be unencrypted, saving time.

0 - inactive

1 - active

stuEnableSerialFastClear Get DWORD When the Clear button is pressed on the capture window, there's a reduced delay before the signature is cleared.

0 - inactive

1 - active

stuSignatureMode Get/Set DWORD Select Signature mode:
0 - use default mode
1 - use signature mode
2 - use non-signature mode

stuSigModeScreenNum Get/Set DWORD Select Signature screen number 1..3

stuSigModeWhy Get/Set String Why string

stuSigModeWho Get/Set String Who String

stuSigModeWhen Get/Set String When String

stuSigModeOK Get/Set String Text for OK button e.g. dc.SetProperty("stuSigModeOK","OK (screen 1)");

stuSigModeClear Get/Set String Text for Clear button

stuSigModeCancel Get/Set String Text for Cancel button

stuSigModeFontName Get/Set String Font name e.g. "Courier New"

stuSigModeFontSize Get/Set DWORD Font size e.g. 10

stuSigModeConfig Set String Signature Mode configuration filename e.g.

dc.SetProperty("stuSigModeConfig", "c:\\config\\STU-screens.config,1");

FlSigCapt: eSeal

Summary

Method

Capture

GetProperty

SetProperty

Property

https://developer-docs.wacom.com/display/DevDocs/STU-540+-+Signature+Screen+Upload

CacheImage

HAlign

Height

HScale

Id

Licence

Name

Transparency

URL

VAlign

VScale

Width

The eSeal object provides the user interface for the insertion of an eSeal image into a signature area with the optional capture of a handwritten signature.

Methods

Capture

Optionally displays a Signature Capture Window (see DynamicCapture) and inserts an eSeal image in the signature area.
If the eSeal has not already been cached, the URL is accessed to download the referenced file.

eSealCaptureResult Capture(SigCtl, Mode, Who, Why, What, Key)

Parameters:

SigCtl SigCtl or SigCtlXHTML object

Mode eSealCaptureMode:

esRequireSignature - Insert eSeal and capture handwritten signature
esNoSignature - Insert eSeal (without signature capture)
esSignatureOptional - Insert eSeal and capture signature if tablet is available

Who String specifying the signatory name.
Optional if InputWho property of SigCtl is set

Why String specifying the signatory name.
Optional if InputWho property of SigCtl is set

What Hash object
Derived from the data set with which the captured signature is to be bound. Typically the data set will be
the contents of the document or form signed by the user.
SigCtlXHTML: The hash is generated automatically from the contents of the XHTML document and cannot
be supplied here.
(Optional)

Key Key object
supplied in order to detect malicious or accidental tampering with the signature object or the signature
data it contains.
SigCtlXHTML: Key type SHA-256 is used automatically but an alternative can be specified.
(Optional)

Return Value:eSealCaptureResult

esCaptureOK Signature captured successfully.

esCaptureCancel Signature not captured because user cancelled Signature Capture Window.

esCapturePadError No capture service available; typically, no functioning digitizing tablet or other device for capturing signatures found.

esCaptureError System error or some other unusual error condition.

esCaptureAbort Signature not captured because the handler for the PreCapture event returned False. With SigCtlXHTML,
this can indicate a failure to parse document contents

esCaptureNoImage Unable to load eSeal image from URL, or parameter error

esCaptureNotLicensed The component has not been licensed to perform capture. This may be because a suitable licence has not
been set or because a condition of the licence has not been met, for example required hardware, such as a
particular tablet type, was not found.

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

SetProperty

Sets the value of a named additional property, overrides a value set in the registry.

void SetProperty(Name, Value)

Parameters:

Name String. Name of the property.

Value Value to assign to property:

Return Value:Boolean

True Name exists and value is valid

False Failed to set property

Properties

Property Type eSeal Property Description

CacheImage boolean False if URL is to be accessed at time of signing.

HAlign eSealHAlig
n
(enum)

Horizontal alignment of image within the signature area
(defaults to 1=centre)

Height Int Height of image in HIMETRIC (0.01mm) units
(Read-only)

HScale Int percentage scaling of image X dimension
(defaults to 100)

id String GUID for internal use only
(Read-only)

Licence Variant Licence object or string

Name String Name for internal use only
(Read-only)

Transparency Int Percentage transparency, 0 = unchanged, 100=not visible
(defaults to 0=unchanged)

URL String URL of image file.
Maximum size is 32K. Use compressed format or reduce bit depth if necessary.

VAlign

eSealVAlign

(enum)

Vertical alignment of image within the signature area
(defaults to 1=centre)

VScale Int Percentage scaling of image Y dimension
(defaults to 100)

Width Int Width of image in HIMETRIC (0.01mm) units
(Read-only)

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

Licence Get/Set String String containing the license used for signature capture

Component_FileVersion Get String Component version e.g. "4.5.2.210"

Where Get/Set String Specifies the location of signing.
The string is displayed in the signature capture dialog and saved in the
signature
data

FlSigCapt: Enumeration Types

DynamicCaptureResult

Returned by the Capture method of DynamicCapture.

Name Value Description

DynCaptOK 0 Signature captured successfully.

DynCaptCancel 1 Signature not captured because user cancelled Signature Capture Window.

DynCaptPadError 100 No capture service available; typically, no functioning digitizing tablet or other device for
capturing signatures found.

DynCaptError 101 System error or some other unusual error condition.

DynCaptIntegrityKeyInvalid 102 The integrity key parameter is invalid (obsolete)

DynCaptNotLicensed 103 The component has not been licensed to perform capture. This may be because a suitable
licence
has not been set or because a condition of the licence has not been met, for example required
hardware, such as a particular tablet type, was not found.

DynCaptAbort 200 Signature not captured because the handler for the PreCapture event returned False.
With SigCtlXHTML, this can indicate a failure to parse document contents

eSealCaptureMode

Selects signature capture options when inserting an eSeal into a signature area.

Name Value Description

esRequireSignature 0 Insert eSeal and capture handwritten signature

esNoSignature 1 Insert eSeal (without signature capture)

esSignatureOptional 2 Insert eSeal and capture signature if tablet is available

eSealCaptureResult

Returned by the Capture method of eSeal.

Name Value Description

esCaptureOK 0 Signature captured successfully.

esCaptureCancel 1 Signature not captured because user cancelled Signature Capture Window.

esCapturePadError 100 No capture service available; typically, no functioning digitizing tablet or other device for capturing
signatures found.

esCaptureError 101 System error or some other unusual error condition.

esCaptureNotLicensed 103 The component has not been licensed to perform capture. This may be because a suitable licence has
not been set or because a condition of the licence has not been met, for example required hardware
such as a particular tablet type, was not found.

esCaptureAbort 200 Signature not captured because the handler for the PreCapture event returned False.
With SigCtlXHTML, this can indicate a failure to parse document contents

esCaptureNoImage 300 Unable to load eSeal image from URL, or parameter error

eSealHAlign

Used to select the horizontal alignment of an eSeal image in the signature area.

Name Value Description

esLeft 0 Left align.

esCentre 1 Centre.

esCenter 1 Centre

esRight 2 Right align

eSealVAlign

Used to select the vertical alignment of an eSeal image in the signature area.

Name Value Description

esTop 0 Top align.

esMiddle 1 Centre.

esBottom 2 Bottom

FlWizCom

FlWizCom: WizCtl

Summary

Method

AddObject

AddPrimitive

Display

FireClick

GetObjectState

GetProperty

PadConnect

PadDisconnect

Reset

SetEventHandler

SetProperty

Property

BackColor

BorderColor

BorderStyle

BorderVisible

BorderWidth

EnableWizardDisplay

Font

InkingPad

Licence

PadHeight

PadWidth

Zoom

Event

PadEvent

Methods

AddObject

Adds an item to the pad control list.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectType enum value

Id String, Specifies an identifier for the object

X, Y Position of the top left corner of the object on the pad display. Value can either be absolute position in pixels, or one of
the strings:

X: "left", "right", "centre"
Y: "top", "middle", "bottom"

Data VARIANT. Value dependent on object type.

Options VARIANT. Value dependent on object type

Return Value:none

AddObject(ObjectText)

Displays a text string on the pad using the current font

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectText

Id The following values have special meanings when used with a signature object:
 "who"Text in Data will also be used as name of signatory.
 "why"Text in Data will also be used as reason for signing.
 "when"Reserved for future use
(Can be null or an empty string)

X, Y Position of the top left corner of the object on the pad display. Value can either be absolute position in pixels, or one
of
the strings:
X: "left", "right", "centre"
Y: "top", "middle", "bottom"

Data Text to display.

Options A value from the TextOptions Enumerator (Optional)

Return Value:none

AddObject(ObjectButton)

Creates a button – text surrounded by a rectangle which generates a click event when tapped with the pen. Text is displayed in the current font

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectButton

Id The following values have special meanings when used with signature or input objects:

"OK" Accepts current input.
With a signature, stores the captured signature in the signature object and terminates input.
Until a signature has been captured, the button is disabled by the Wizard Control.
With an Input object, the button is disabled until the required minimum number of characters has been
entered.

"Clear" Clears current input allowing user to start again
With a signature, clears any captured 'ink' from the display
With an Input object, clears all entered input

"Cancel" With a signature, clears any captured 'ink' and terminates input

"Delete" With an input object, deletes the last character

X, Y Position of the top left corner of the object on the pad display. Value can either be absolute position in pixels, or one of
the strings:
 X: "left", "right", "centre"
 Y: "top", "middle", "bottom"

Data Text to display.

Options Either, an integer specifying button width in pixels or an ObjectOptions object.
If the given width is less than the width of the text (in the current font), it is ignored.
(Optional)

Return Value:none

AddObject(ObjectCheckbox)

Creates a checkbox – a small rectangle followed by text which toggles its state and generates an event when tapped with the pen. Text is displayed in the
current font

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectCheckbox

Id The following values have special meanings when used with a signature object. Cannot be any of the values reserved
for
text or button objects:
who, why, Ok, Clear, Cancel.

X, Y Position of the top left corner of the object on the pad display. Value can either be absolute position in pixels, or one of
the strings:
 X: "left", "right", "centre"
 Y: "top", "middle", "bottom"

Data Text to display.

Options A combination of values from the CheckboxOptions enum (Optional)

Return Value:none

AddObject(ObjectRadioButton)

Creates a radio button – a small circle followed by text. Radio buttons are used in groups where tapping on one with the pen selects it and deselects the
currently selected button in the group. Tapping with the pen also generates an event. Text is displayed in the current font

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectCheckbox

Id The following values have special meanings when used with a signature object. Cannot be any of the values reserved
for
text or button objects: who, why, Ok, Clear, Cancel.

X, Y Position of the top left corner of the object on the pad display.
Value can either be absolute position in pixels, or one of the strings:
 X: "left", "right", "centre"
 Y: "top", "middle", "bottom"

Data Text to display.

Options ObjectOptions object specifying the name of the group to which this radio button belongs and, optionally, whether this
option is initially selected.

Return Value:none

AddObject(ObjectSignature)

Puts the pad into signature capture mode and specifies a signature object or control in which a captured signature is saved. It is an error to add more than
one ObjectSignature to the current control list

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectSignature

Id Cannot be any of the values reserved for text or button objects: who, why, Ok, Clear, Cancel;
can be null or an empty string

X, Y Values ignored

Data A signature object or control. (Note: cannot be a SigCtlXHTML if an ObjectHash has been added)

Options A Key object to use for setting integrity of captured signature. (Optional)

Return Value:none

AddObject(ObjectInput)

Provides an input mechanism for PIN code entry.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectInput

Id Cannot be any of the values reserved for text or button objects:
who, why, Ok, Clear, Cancel; can be null or an empty string

X, Y Values ignored

Data InputObj to be used for handling pin pad input

Options Not used, should be omitted

Return Value:none

AddObject(ObjectInputEcho)

Specifies location of and character to use for ObjectInput 'echo'.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectInputEcho

Id Cannot be any of the values reserved for text or button objects:
who, why, Ok, Clear, Cancel; can be null or an empty string

X, Y Values ignored

Data Character to be used for each button press

Options Either, a combination of values from the InputEchoOptions enum or an ObjectOptions
object.
(Optional)

Return Value:none

AddObject(ObjectHash)

Supplies a Hash object representing data to be bound to a captured signature.
It is an error to add more than one ObjectHash to the current control list
Cannot be used in conjunction with a SigCtlXHTML control (ie in a web page) as the latter automatically binds to the host document.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectHash

Id Cannot be any of the values reserved for text or button objects:
who, why, Ok, Clear, Cancel; can be null or an empty string

X, Y Values ignored

Data Hash object representing data to be bound to a captured signature.

Options Not used, should be omitted

Return Value:none

AddObject(ObjectImage)

Displays an image on the pad. The image can optionally be made clickable in which case click events are generated when the image is tapped with the
pen.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectImage

Id Supports the same reserved Ids as button objects. See AddObject(ObjectButton) above.
To make the image clickable supply a named Id e.g. "myimage"
To prevent the image being clickable supply a blank Id: ""

X, Y Position of the top left corner of the object on the pad display.
Value can either be absolute position in pixels, or one of the strings:
 X: "left", "right", "centre"
 Y: "top", "middle", "bottom"

Data

Image to display. Can be any one of the following:
String:
containing "://" is assumed to be the URL of an image file
containing a character:

'.' or '\'

is assumed to be the name of an image file on the local file system
otherwise assumed to be base64-encoded image data

Picture:
OLE picture object (IPicture or IPictDisp interface)

Array of bytes:
Binary image data as an array of bytes

Options Not used, should be omitted

Return Value:none

AddObject(ObjectDisplayAtShutdown)

Causes the current control set to remain displayed on the pad following disconnection.

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectDisplayAtShutdown

Id Cannot be any of the values reserved for text or button objects:
who, why, Ok, Clear, Cancel; can be null or an empty string

X, Y Values ignored

Data Not used, should be omitted

Options Not used, should be omitted

Return Value:none

AddObject(ObjectInking)

Provides a mechanism for capturing pad 'ink' as an image

void AddObject(Type, Id, X, Y, Data, Options)

Parameters:

Type ObjectInking

Id Cannot be any of the values reserved for text or button objects:

 who, why, Ok, Clear, Cancel; can be null or an empty string

X, Y Values ignored

Data Not used, should be omitted

Options Not used, should be omitted

Return Value:none

A snapshot of current ink is retrieved, in PNG format as a base-64 encoded string, using the WizCtl GetProperty method as follows:

 var pngAsText = wizctl.GetProperty("ObjectInking_Bitmap");

Alternatively, the image can be written to a file using SetProperty. The format of the image is determined by the file name extension (bmp, jpg, png or tif):

 wizctl.SetProperty("ObjectInking_Bitmap", "c:\\file.png");

In both cases, the size of the image is the size of the LCD screen

AddPrimitive

Adds a graphics primitive item to the internal list.

void AddPrimitive(Type, X1, Y2, X2, Y2, Data, Options)

Parameters:

Type PrimitiveType enum value.

X1, Y1 If Type is PrimitiveLine, start position of line, otherwise position of top-left corner of bounding rectangle of item.
Value can be the absolute position in pixels or one of the strings:
"left", "right", "centre" (for X1) or "top", "middle", "bottom" (for Y1).

X2, Y2 If Type is PrimitiveLine, end position of line, otherwise position of bottom-right corner of bounding rectangle of
item.
Value can be the absolute position in pixels, one of the strings:
"left", "right", "centre" (for X2) or "top", "middle", "bottom" (for Y2)
or a string in the format "+V" or " V" (where V is an integer) for a value relative to X1 or Y1.

Data Line width in pixels (Optional, default value 1)

Options VARIANT. Combination of PrimitiveOptions values (Optional, default value PrimitiveLineSolid + PrimitiveOutline)

Return Value:none

Display

Clears current display contents, turns on backlight (if not already on), updates display with all buffered objects and primitives and enables event handling.

void Display()

Parameters:none

Return Value:none

FireClick

Simulates 'click' on an object (button, checkbox, image etc). Allows, for example, a signature to be accepted by clicking a button on the PC screen rather
than taping the OK button on the pad.

void FireClick(Id)

Parameters:

Id Id of pad control for which to simulate click

Return Value:none

GetObjectState

Returns state information of a given object or an empty Variant if specified object does not exist.

Variant GetObjectState(Id)

Parameters:

Id Identifier of object.

Return Value: Variant

Variant ObjectCheckbox: 1 = Checked; 0 = Unchecked
ObjectInput: number of characters currently in input
buffer
Other Object types: Integer, value undefined
Id not recognised: Empty variant

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

PadConnect

Connects to the signature tablet / pad.

Boolean PadConnect(Id)

Parameters:none

Return Value: Boolean

True Success

False Failed to connect

PadDisconnect

Disconnects the signature tablet / pad.

void PadDisconnect()

Parameters:none

Return Value:none

Reset

Disables events, removes all internal controls and prepares for setting the display. Does not change the current display.

void Reset()

Parameters:none

Return Value:none

SetEventHandler

Sets the script function to be called to handle tablet control events.

void SetEventHandler(EventHandler)

Parameters:

EventHandler Dispatch interface with a default method. See Notes below for method parameters

Return Value:none

The EventHandler function should have the prototype:

void IDispatch * WizardControl, VARIANT Id, VARIANT Type) EventHandler(

Parameters:

WizardControl WizardControl object generating event

Id Id of the WizardControl object which is the source of the event

Type Type of event generated

Return Value:none

SetProperty

Sets the value of a named additional property, overrides a value set in the registry.

void SetProperty(Name, Value)

Parameters:

Name String. Name of the property

Value Value to assign to property

Return Value:Boolean

True Name exists and value is valid

False Failed to set property

Properties

Property Type WizCtl Property Description

BackColor OLE_COLOR Background colour

BorderColor OLE_COLOR Colour of 'Flat' border

BorderStyle long Type of border displayed if BorderVisible is True. See BorderStyle enumeration type.

BorderVisible Boolean True to draw border round wizard display; False to draw without a border

BorderWidth long Width in pixels of 'Flat' border

EnableWizardDisplay Boolean Enables or disables mouse interaction with objects (buttons etc) on the wizard display
Note: Mouse interaction is not currently implemented

Font IFontDisp Font used to display text of all subsequently added objects

InkingPad Boolean True if the pad has a display(Read-only)

Licence Variant Licence object or string

PadHeight short Height of the pad display in pixels. Read-only if inking pad

PadWidth short Width of the pad display in pixels. Read-only if inking pad

Zoom float Sets the scaling of the wizard display relative to the physical pad display as a percentage. (Default: 100)

Properties supported by GetProperty/SetProperty

Name Get/Set Type Description

Licence Get/Set String String containing the license used for signature capture

Component_FileVersion Get String Component version e.g. "4.5.2.210"

DynamicSignatureCapture_RetryCoun
t

Get/Set String The number of times the Clear button can be used during signature capture

ForceMonochrome Get/Set Boolean When true the Wizard sends text displays as monochrome images.
This reduces the time to update the display on colour STU tablets.

ObjectInking_Bitmap Get String Snapshot of captured 'ink', in PNG image format, as a base-64 encoded string.
(See AddObject(ObjectInking))

InputValue Set Sets the value for an ObjectInput

ObjectOptions.* Get Boolean True if specified option is supported. Possible value are:

ObjectOptions.Button.Width
Button.HeightObjectOptions.
Button.InvertObjectOptions.
Echo.CharObjectOptions.
Echo.SpacingObjectOptions.
Echo.UnderlineObjectOptions.
Echo.LengthObjectOptions.

CaptureInkWidth Get/Set String Decimal Width, in mm, of 'ink' used to render the signature image.
Default = 0.7mm
Note:

min = 0.1mm
max = 2.0 mm
scales with signature
varies with pressure (if pressure data is available)

CaptureInkColor Get/Set String Color of 'ink' used to render the signature image as a comma separated
decimal
RGB value.
e.g. for Blue:
setProperty("CaptureInkColor", "0,0,1")
Individual color values are in the decimal range 0.0 to 1.0, factoring the RGB
maximum of 255
e.g. 0.0 for 0, 0.5 for 127, 1.0 for 255

ObjectForegroundColor Get/Set String Foreground color to use for objects added subsequently as a comma
separated
decimal RGB value.

ObjectBackgroundColor Get/Set String Background color to use for objects added subsequently as a comma
separated
decimal RGB value.

FlWizCom: InputObj

Summary

Method

Clear

SetEncryption

Property

Data

EncryptionType

MaxLength

MinLength

Text

The InputObj object is used to handle the input data when the wizard control is configured for PIN code entry. The InputObj handles all the interaction
between the user and the pad, greatly simplifying the coding effort needed. It is used to set the PIN configuration, including its minimum and maximum
lengths and the type of encryption required.

Methods

Clear

Resets the input object ready to restart PIN capture.

void Clear()

Parameters:none

Return Value:none

SetEncryption

Sets the encryption of the InputObject data.
Once set, encryption cannot be changed except by first calling the Clear method.
Currently, the only encryption algorithm supported is TripleDES. For this algorithm, "Key" must be a 24-byte (192-bit) binary value either in a byte array (a
SafeArray of type VT_UI1) or a base64 encoded string. In addition, the following information will be required for decryption:
Cipher mode:CBC (cipher block chaining)
Initialisation Vector:8 bytes, all zero
Padding mode:PKCS 5

Void SetEncryption(Type, Key)

Parameters:

Type EncryptAlg enum value specifying type of encryption to be used.

Key VARIANT. The encryption key to be used

Return Value:none

Properties

Property Type InputObj Property Description

Data VARIANT Gets the data entered by the user in the form of a byte array.

EncryptionType LONG Returns the type of encryption being used.
Note: The encryption type is set using the SetEncryption method.

MaxLength short The maximum number of digits in the PIN

MinLength short The minimum number of digits in the PIN

Text BSTR Gets the data entered by the user.
If no encryption is used the string will contain the digits as entered, otherwise the result will be
a Base64 encoded encrypted string.

FlWizCom: ObjectOptions

Summary

Method

GetProperty

SetProperty

Property

none

The ObjectOptions object is used to pass multiple options to the WizCtl.AddObject method.

Methods

GetProperty

Returns the current value of a property.

void GetProperty(Name)

Parameters:

Name The name of the property to retrieve

Return Value:Variant

Variant Current value of the named property.
Empty if no value has been set.

SetProperty

Sets the value of a property.

void SetProperty(Name, Value)

Parameters:

Name The name of the property to set

Value Value to assign to property.

Return Value:Boolean

True

Properties

Values of any type may be assigned to any named property, however only certain properties are recognised for each object type. Recognised properties
are expected to have values of a particular type (or of a type that can be converted to the expected type).

Properties supported by ObjectButton

Property Expected Type Property Description

Align Integer A combination of values from the ButtonOptions enumeration specifying the alignment of text
within
the button rectangle

Greyed Boolean True to create a disabled button (displayed greyed out)

Height Integer Height to make button in pixels

Invert Boolean True to display the button inverted (white text in a black rectangle)

Width Integer Width to make button in pixels

Properties supported by ObjectInputEcho

Property Expected Type Property Description

CharSet String Single-character string specifying character to use for echoing input
e.g. '*' if input is for a password or PIN

Spacing Integer One of the spacing values from the InputEchoOptions enumeration.

Underline Boolean False to turn off display of underlines to indicate input echo character positions.

Properties supported by ObjectRadioButton

Property Expected Type Property Description

Group String Name of group to which a radio button belongs. Required

Checked Boolean True if the radio button is initially selected.
If multiple radio buttons in a group are created with Checked=true, the last one added will be the
one
selected.

FlWizCom: Enumeration Types

BorderStyle

Used to set or get the style of border drawn around the control

Name Value Description

BdrFlat 0 Solid border

BdrRaised 5 2-pixel wide, 3-d border giving the control the appearance of being raised above its background

BdrEtched 6 2-pixel wide, 3-d border with the appearance of a sunken edge.

BdrBump 9 2-pixel wide, 3-d border with the appearance of a raised edge.

BdrSunken 10 2-pixel wide, 3-d border giving the control the appearance of being sunken into its background

ButtonOptions

WizCtl: used to specify alignment of text without button rectangle (via ObjectOptions object)

Name Value Description

BtnAlignCentre 0x00 Centre horizontally

BtnAlignMiddle 0x00 Centre vertically

BtnAlignLeft 0x01 Left align

BtnAlignRight 0x02 Right align

BtnAlignTop 0x04 Top align

BtnAlignBottom 0x08 Bottom align

CheckboxOptions

WizCtl: used to specify initial checkbox state when adding a checkbox object and to select the display type

Name Value Description

CheckboxUnchecked 0x00 Initial state unchecked

CheckboxChecked 0x01 Initial state checked

CheckboxDisplayTick 0x02 Indicate checked with a tick symbol

CheckboxDisplayCross 0x04 Indicate checked with a cross

EncryptAlg

Specifies the type of encryption to be used

Name Value Description

EncryptNone 0 None

EncryptTripleDES 1 Triple DES

EventType

Type of Event for callback function

Name Value Description

EvTextClicked 0 Text Clicked

EvButtonClicked 1 Button Clicked

EvCheckboxChecked 2 Checkbox Checked

EvCheckboxUnchecked 3 Checkbox Unchecked

EvInputMinReached 4 Input Min Reached

EvInputMaxReached 5 Input Max Reached

EvInputExceeded 6 Input Exceeded

InputEchoOptions

Used to specify the way an InputEcho field echoes user input

Name Value Description

EchoNoSpacing 0x00 No space between characters

EchoHalfSpacing 0x01 Half space

EchoSingleSpacing 0x02 Single space

EchoDoubleSpacing 0x04 Double space

EchoUnderline 0x08 Underline echoed characters

MarkupStatus

HTML document Markup status

Name Value Description

mkupSuccess 0 Markup added successfully

mkupDocError 1 Unable to access HTML document

mkupEltNotFound 2 Failed to find named element in HTML document

mkupEltNotEmpty 3 Named element in HTML document is not empty

mkupEltEmpty 4 Named element in HTML document is empty

mkupError 5 Error inserting markup into HTML document

ObjectType

Used to specify object type required in calls to AddObject method

Name Value Description

ObjectText 0 Display text

ObjectButton 1 Button

ObjectCheckbox 2 Checkbox

ObjectSignature 3 Signature

ObjectInput 4 Input

ObjectInputEcho 5 Input Echo

ObjectHash 6 Hash

ObjectImage 7 Display image

ObjectDisplayAtShutdown 8 Do not clear pad display on disconnect

ObjectInking 9 Enable ink capture as image

ObjectRadioButton 10 Radio Button

PrimitiveOptions

Used to specify options for graphics primitives in calls to AddPrimitive method

Name Value Description

PrimitiveLineSolid 0x01 Solid

PrimitiveLineDashed 0x02 Dashed

PrimitiveOutline 0x04 Outline

PrimitiveFill 0x08 Fill shape

PrimitiveFillXOR 0x10 Invert area of shape

PrimitiveType

Used to specify graphics primitive type required in calls to AddPrimitive method

Name Value Description

PrimitiveLine 0 Line

PrimitiveRectangle 1 Rectangle

PrimitiveEllipse 2 Ellipse

TextOptions

Used to specify text alignment

Name Value Description

TextAlignLeft 0 Align left

TextAlignRight 1 Align right

TextAlignCentre 2 Centre the text

TextAlignJustify 3 Insert spaces to align left and right

Configuration (Registry Settings)

Signature Capture Dialog Settings

Various aspects of signature capture, including the physical layout of the capture window (see figure below), can be configured using registry settings
under the key:

 HKEY_LOCAL_MACHINE\Software\Florentis\sd

On 64-bit Windows with a 32-bit Signature Library installation:

 HKEY_LOCAL_MACHINE\Software\WOW6432Node\Florentis\sd

 HKEY_LOCAL_MACHINE\Software\Florentis\sd
On 64-bit Windows with a 32-bit signature library installation:
 HKEY_LOCAL_MACHINE\Software\WOW6432Node\Florentis\sd

The signature capture window contains the elements:

Why - I authorize...
Who - J Smith
When - 12:08:53 ...
Buttons - OK/Clear/Cancel
Capture area - pen area restrained to the dialog

 Capture Window element placement
The following table lists the values which can be used together with their type and effect(s).

Signature Capture Style

Value Type Description

BtnsInside DWORD Non-zero (default) displays and responds to the OK/Clear/Cancel buttons on the pad display.
A zero value displays the buttons outside the Windows capture dialog, and removes them from
the pad display.

CaptureBackground DWORD A value to control the background texture of the capture window and for colour tablets.

The default value is 0.

0 – disable background.

1 – use paper white texture.

(all other values reserved for future use)

CaptureExtentX DWORD Sets width of the capture area in pixels. If not set, the size of the capture area is determined by the
size of the digitizer. If this value is set, CaptureExtentY must also be set.

CaptureExtentY DWORD Sets height of the capture area in pixels. If not set, the size of the capture area is determined by
the
size of the digitizer. If this value is set, CaptureExtentX must also be set.

CaptureInkColor String A string representation of three comma separated floating numbers between 0.0 and 1.0 inclusive
for the RGB values of the ink on the screen and tablet (where supported).

The default value is “0, 0, 0.545098”.

CaptureInkWidth String A string representation of a floating point number, stating the width of the ink on screen, in mm.
The default value is “0.8”.

CaptureService String Limits the capture service(s) used:

hid
signpad
tabletpc
wintab

One or more values can be defined, e.g.
CaptureService=signpad;wintab.
For tablet PCs this should be set to "tabletpc;wintab".

EnableSimulation DWORD Enable/disable simulation of signature capture when a digitizer is not installed.
For example, to run a signature capture demonstration with no digitizer installed, simply ensure
this key has been defined as non zero in the registry:

sd: EnableSimulation=1
0 (or not present) = disable
non-zero = enable

epInkWidth DWORD An enumeration value directly sent to the ePad-Ink to control ink width.

The default value is 1.

The following registry keys have been removed:

WhoInside
WhyInside
WhenInside
WhereInside
InkingDigitizer

InkingDigitizer DWORD (v3.x no longer supported)
Value: 0 - Assume non-inking characteristics.

Value: 1 - Assume inking characteristics.
Explicitly tunes the capture service for an inking digitizer.
Dependent upon the underlying software drivers, this typically results in changes to the user
interface, mouse handling and cursor display.

InsideFontFaceName String Name of font to use for text within the capture area.

InsideFontCharSet DWORD Character set to use for text within the capture area. (Appropriate values may be found in the
Win32 API documentation.)

InsideFontHeight DWORD Point size of font to use for text within the capture area.

OutsideFontFaceName String Name of font to use for text outside of the capture area.

OutsideFontCharSet DWORD Character set to use for text outside of the capture area.

OutsideFontHeight DWORD Point size of font to use for text outside of the capture area.

ShowWaitDlg DWORD Optionally display 'initialising signature capture' to start signature capture:

Value: 0 - do not display
Value: 1 - display when starting signature capture (default)

The option is more noticeable with a low speed devices such as a serial STU

SignatureGuideType DWORD 0 = horizontal line:

1, 2 = Box corners

For these options, either BtnsInside should be 0, or InsideFontHeight should be reduced,
otherwise buttons may overlap name and time;
reason for signing should be limited to two lines otherwise top of box may be overwritten.
Type 1 is a fixed size box; type 2 makes a (limited) adjustment to the top of the box for longer
reason for signing strings.
3 = None

4 = Buttons on right

stuInkWidth DWORD An enumeration value directly sent the STU tablet to control ink width.
Valid values are typically 0, 1, or 2. See the STU documentation for full details.
The default value as per the tablet firmware.

SyncCursor DWORD Non-zero to force the system cursor to mirror pen movements on screen during signature capture.

WhenInside DWORD (v3.x no longer supported)
Non-zero to force date and time to appear within the capture area; zero to force it to appear
outside (below) the capture area.

WhereInside DWORD (v3.x no longer supported)
Non-zero to force location to appear within the capture area; zero to force it to appear outside
(below) the capture area.

WhoInside DWORD (v3.x no longer supported)
Non-zero to force signatory name to appear within the capture area; zero to force it to appear
outside (below) the capture area.

WhyInside DWORD (v3.x no longer supported)
Non-zero to force reason for signing to appear within the capture area; zero to force it to appear
outside (above) the capture area.

WizardShowWait DWORD Applies to STU-430 and STU-530 only.
If the setting is missing or non-zero, an hourglass icon will be displayed when the Wizard control
updates the STU display

wtLibrary String Full path and name of wintab dll to be used.

wtButtonMask DWORD Default: 0xffffffff.
Value: bit-mask - Wintab Specification 1.1, section 7.4.1, pkButtons (absolute mode)
Wintab driver specific.
A digitizer stylus may implement multiple buttons, of which the 'tip' is one. In general it is not
possible to determine which button is the tip, therefore the capture service assumes that all button
activity is tip-related. However, it has been found that some buttons mounted on the side of the
stylus can be pressed in error whilst signing, resulting in the recording of erroneous data when a
pen in close proximity is mistakenly considered to be down. Setting the button mask to the explicit
tip button bit resolves this problem.

wtMapDigitizer DWORD Default: 0
Value: 0 - do not map digitizer
Value: 1 - map digitizer
Wintab driver specific.

The capture window does not change the tablet mapping as a default. This means that on a
Bamboo/Intuos tablet the signature capture window uses a partial area of the tablet surface.
The behaviour can be changed to use the whole tablet surface for signature capture by selecting
the wtMapDisgitizer option:
If the capture window is moved once a signature has been collected, no further ink is permitted.
However you are free to press any of the buttons; pressing the “Clear” button will allow ink to be
collected again.

wtPKTDATA DWORD Value: bit-mask - Wintab Specification 1.1, section 7.1, WTPKT
Wintab driver specific.
Some Wintab drivers do not correctly identify the data that they collect.
This bit mask adds (binary OR) to the data reported by the digitizer.
Note: altering this value may affect the forensic data that is stored.

SigCom DLL Settings

Settings relating to the SigCom DLL can be configured using registry settings under the key:

 HKEY_LOCAL_MACHINE\Software\Florentis\SigCom

On 64-bit Windows with a 32-bit Signature Library installation:

 HKEY_LOCAL_MACHINE\Software\WOW6432Node\Florentis\SigCom

The following table lists the values which can be used together with their type and effect(s).

SigCOM Settings

Value Type Description

get_SigText DWORD Selects the format of the data returned when reading SigObj.SigText
16 = base 16 (hexadecimal) 64 = base 64 (default)
any other value will generate an error when the property is read.
The setting is not used when the signature data - the format is detected automaticallywriting

language String User-interface language preference(s) as comma or semi-colon separated list of language IDs. e.g.:

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Florentis\SigCapt]
"language"="FR;"

If multiple IDs are defined the first language found will be used, For example for Belgian French or fallback to standard
French:

"language"="FR-BE;FR"

ResourceDLL String Full pathname to a language resource DLL
Obsolete/Deprecated

SigCapt DLL Settings

Settings relating to the SigCapt DLL can be configured using registry settings under the key:

 HKEY_LOCAL_MACHINE\Software\Florentis\SigCapt

 On 64-bit Windows with a 32-bit Signature Library installation:

 HKEY_LOCAL_MACHINE\Software\WOW6432Node\Florentis\SigCapt

The following table lists the values which can be used together with their type and effect(s).

SigCapt Settings

Value Type Description

language String User-interface language preference(s) as comma or semi-colon separated list of language ids.

ResourceDLL String Full pathname to the language resource DLL
Obsolete/Deprecated

WizCOM DLL Settings

Settings relating to the SigCapt DLL can be configured using registry settings under the key:

 HKEY_LOCAL_MACHINE\Software\Florentis\WizCOM

On 64-bit Windows with a 32-bit Signature Library installation:

 HKEY_LOCAL_MACHINE\Software\WOW6432Node\Florentis\WizCOM

 The following table lists the values which can be used together with their type and effect(s).

WizCOM Settings

Value Type Description

language String User-interface language preference(s) as comma or semi-colon separated list of language ids.

ResourceDLL String Full pathname to the language resource DLL
Obsolete/Deprecated

Signature Data Encryption

Overview

From version 4.x industry standard encryption can be applied to signature data while maintaining existing SigObj processing. Encryption is enabled by
default for signature collection but can be disabled via registry key.

Signature data can be obtained from, or stored in a SigObj by:

Reading SigText property
Reading SigData property
Steganographic encoding in signature image (RenderBitmap)
COM object persistence (ie writing to an IStream)

Correspondingly, a SigObj can be initialized with signature data by:

Assignment to SigText property
Assignment to SigData property
Reading from encoded bitmap (ReadEncodedBitmap)
COM object persistence (ie read from an IStream)
Signature capture

The added layer of encryption prevents unauthorized use while allowing authorized access to the full range of operations of a signature object (SigObj).

Both symmetric and asymmetric encryption methods are supported:

Symmetric encryption uses the AES algorithm with a 256-bit key in CBC mode.
Asymmetric encryption uses OpenSLL "envelope" functions. Signature data is encrypted with a symmetric "session key" (AES, 256-bit, CBC
mode as above).
The session key is itself is then encrypted using the public key.

Unencrypted (binary) FSS data begins with the 2 bytes 'F' & 'S'. Encrypted data begins with an 8-byte header - "wgssAES_" for AES (symmetric)
encryption; "wgssRSA_" for RSA (asymmetric) encryption.

When a SigObj is initialized with encrypted signature data, until the data is decrypted:

SigCtl will display a 'locked' icon to indicate the signature is encrypted
SigText & SigData will return the encrypted value (and continue to do so after decryption)
Clear() method deletes the encrypted data, returning the object to its uninitialized state
All other properties & methods fail with E_ACCESSDENIED

When the decryption key is set, data will be decrypted and SigObj will operate as normal (except for SigText/SigData returning encrypted values as noted
above).

Setting an Encryption Key

SetProperty is used to enable encryption and decryption by setting symmetric or asymmetric key(s). It can be "turned off" by calling SetProperty with a null
/empty key.

For symmetric encryption:

SetProperty("EncryptionPassword", password);

For asymmetric encryption:

SetProperty("EncryptionPublicKey", key);
SetProperty("EncryptionPublicKeyFile", filename);
SetProperty("EncryptionPrivateKey", key);
SetProperty("EncryptionPrivateKeyFile", filename);

"key" (string) or file contents must be in PEM format.

If the key is password-protected, the password can be passed to SetProperty by appending it to the key or filename, separated by a comma. For example:

SetProperty("EncryptionPrivateKeyFile", "private_key.pem,mypassword")

In practice the password will most likely be retrieved by the application at runtime rather than being hardcoded and visible.

Key Generation using OpenSSL

Private key:

openssl.exe genpkey -algorithm RSA -out -pkeyopt rsa_keygen_bits:2048 private_key.pem

To make the key password protected, add: -aes128 -pass pass:password

(optionally, use -aes256 instead of -aes128)

Public key:

openssl rsa -pubout -in -out private_key.pem public_key.pem

Encryption Status

The following values can be retrieved using GetProperty:

GetProperty("IsEncrypted") Returns TRUE if the SigObj contains encrypted signature data which has not (yet) been decrypted.

GetProperty("CanEncrypt") Returns TRUE if a password or public key has been set.
If the SigObj already contains sig data, or if it is subsequently set (via SigData, SigText, Capture etc), it will be
encrypted.

GetProperty("CanDecrypt") Returns TRUE if a password or private key has been set.
Sig data encrypted (with the appropriate password or public key) can be set and will be decrypted.

Signature ISO Format

Overview

Signatures captured using the Signature Library are saved in the proprietary Wacom Forensic Signature Store (FSS) format. The format is used
consistently to provide compatibility between different platforms and applications, for example mobile signature capture with Windows SignatureScope
analysis.

To provide interoperability with third-party software an ISO format signature can be used. A number of ISO standards are defined but the Signature Library
implements the following:

ISO 19785 XML format
binary data format specified in ISO19794-7

An example of an ISO format signature is as follows where the signature pen data is contained within the <BDB> tags:

Sample signature in ISO format

?xml
version="1.0" encoding="UTF-8"?>
<BIR xmlns="http://standards.iso.prg/iso-iec/19785/-3/ed-2/">
<!--
{iso registration-authority cbeff(19785) biometric-organization(0)
jtc1-sc37(257) patron-format(1) xml-full(7)} -->
<!--
<OBJECT_IDENTIFIER>1.1.19785.0.257.1.7</OBJECT_IDENTIFIER> -->
<Version><Major>2</Major><Minor>0</Minor></Version>

<CBEFFVersion><Major>2</Major><Minor>0</Minor></CBEFFVersion>
<BIRInfo>
<Creator>WacomGSS Signature SDK - 67</Creator>
<Integrity>false</Integrity>
<CreationDate>2018-06-19T14:15:17Z</CreationDate>
</BIRInfo>
<BDBInfo>
<CreationDate>2018-06-19T14:15:09Z</CreationDate>
<Type>SignatureSign</Type>
</BDBInfo>
<BDB>U0RJACAxMADBYOC0gIAAp7
/gtICAAJ3PgOnEYAAAAf8AAAAAAOqjQ5A6AAAAagGjQ5A6ADIApwGjQ5A6AGQA5gGjQ5A6AJYBDQGjQ5A6AMgBJwGjQ5A6APoBPQGjQ5A6ASwBUQ
GjN5A5AV4BZQGjN5A5AZABdgGjN5A5AcIBgwGjN5A5AfQBjwGjN5A5AiYBmQGjN5A5AlgBogGjN5A5AooBqgGjN5A5ArwBsgGjN5A5Au4BuQGjN5
A5AyABwAGjN5A5A1IBxgGjN5A5A4QBzAGjN5A5A7YB0gGjN5A5A+gB1wGjN5A5BBoB3gGjN5A5BEwB5AGjN5A5BH4B6QGjLZBCBLAB7gGjLZBCBO
IB8gGjIJBEBRQB9gGjFpBGBUYB+AGjCZBHBXgB+wGi+JBIBaoB/QGi5JBIBdwB/gGiypBJBg4B/gGirZBJBkAB/wGii5BJBnIB/wGiZpBJBqQB
/wGiOJBIBtYB/wGiBZBHBwgB/wGhzJBHBzoB/wGhjpBHB2wB/wGhTZBHB54B/wGhB5BHB9AB/wGgvZBHCAIB/wGgcJBICDQB/wGgJJBJCGYB
/wGf2JBJCJgB/wGfjJBJCMoB/wGfQJBJCPwB/wGe9ZBKCS4B/wGeqZBLCWAB/wGeXpBMCZIB/wGeFZBMCcQB/wGdypBNCfYB/wGdfpBOCigB
/wGdMZBOCloB/wGc45BOCowB/wGclJBOCr4B/wGcQ5BNCvAB/wGb8JBNCyEB/wGbmpBMC1QB/wGbRJBLC4YB/wGa7pBKC7gB/wGanZBKC+oB
/wGaW5BLDBwB/wGaIZBMDE4B/wGZ85BMDIAB/wGZz5BNDLIB/wGZuJBPDOQB/wGZqpBQDRYB/wGZqpBQDUgB/wGZqpBQDXkB/wGZqpBQDawB
/wGZqpBQDd4B/wGZqpBQDhAB/wGZqpBQDkIB/wGZqpBQDnQB/wGZqpBQDqYB/wGZqpBQDtgB/wGZqpBQDwoB/wGZqpBQDzwB/wGZqpBQD24B
/wGZqpBQD6AB/wGZopBGD9IB/wGZopBGEAQB/wGZopBGEDYB/wGZpJA0EGgB/wGZpZAiEJoB/wGZppAHEMwB/wGZp4/lEP4B/wGZp4+5ETAB
/wGZqI+FEWIB/wGZqY9IEZQB/wGZqY8DEcYB/wGZq466EfgB/wGZq45vEioB/wGZqo4jElwB/wGZq43VEo4B/wGZq42GEsAB/wGZq402EvIB
/wGZq4znEyQB/wGZq4yYE1YB/wGZqoxKE4gB/wGZqov6E7oB/wGZqIuvE+wB/wGZo4tvFB4B/wGZn4s4FFAB/wGZnosLFIIB/wGZn4roFLQB
/wGZn4rPFOYB/wGZoIq/FRgB/wGZoIq/FUoB/wGZoIq/FXwB/wGZoIq/Fa4B/wGZroq3FeAB/wGZroq3FhEB/wGZroq3FkMB/wGZroq3FnYB
/wGZroq3FqgB/wGZtYqtFtoB/wGZtYqtFwwB/wGZtYqtFz4B/wGZv4qpF3AB/wGZv4qpF6IB/wGZzoqoF9QB/wGZ2IqpGAYB/wGZ44qpGDgB
/wGZ8YqpGGoB/wGaAIqrGJwB/wGaEoqrGM4B/wGaJoqsGQAB/wGaPYqsGTIB/wGaWIqtGWQB/wGaeoqtGZYB/wGaoYqtGcgB/wGa0IqtGfoB
/wGbBoqtGiwB/wGbRYquGl4B/wGbi4quGpAB/wGb3IquGsIB/wGcNIquGvMB/wGclYquGyUB/wGdAIquG1gB/wGddIqvG4oB/wGd8IqvG7wB
/wGedIqvG+4B/wGe/oqvHCAB/wGfjYqwHFIB/wGgH4qyHIQB/wGgs4q2HLYB/wGhQIq6HOgB/wGhu4q8HRoB/wGiJIq+HUwB/wGieorAHX4B
/wGivorCHbAB/wGi7orEHeIB/wGjDIrEHhQB/wGjF4rDHkYB/wGjF4rDHngB/wGjF4rDHqoB/wGjF4rDHtwB/wGjF4rDHw4B/wGjF4rDH0AB
/wGjF4rDH3IB/wGjF4rDH6QB/wGjF4rDH9UB/wGjF4rDIAgB/wGjGorOIDoB/wGjGorOIGwB/wGjGorOIJ4B/wGjGorOINAB/wGjGorOIQIB
/wGjGorOITQB/wGjGorOIWYB/wGjGorOIZgB/wGjGorOIcoB/wGjGorOIfwB/wGjGorOIi4B/wGjGorOImAB/wGjEoraIpIB/wGjEoraIsQB
/wGjEIrwIvYB/wGjD4sDIygB/wGjD4sfI1oB/wGjDotCI4wB/wGjDotvI74B/wGjD4ujI/AB/wGjEIvkJCIB/wGjEYwtJFQB/wGjE4yAJIYB
/wGjFYzeJLgB/wGjF41HJOoB/wGjGo26JRwB/wGjHI43JU4B/wGjHY60JYAB/wGjHo8gJbIB/wGjII+BJeQB/wGjI4/TJhYB/wGjJZAUJkgB
/wGjJpBDJnoB/wGjJpBhJqwB/wGjJ5BsJt4B/wGjJ5BsJxAB/wGjJ5BsJ0EB/wGjKpB5J3QB/wGjKpB5J6UB/wGjKpB5J9gB/wGjKpB5KAoB
/wGjKZCDKDwB/wGjKZCDKG4B/wGjKZCDKKAB/wGjKZCDKNIB/wGjKZCDKQQB/wGjKZCDKTYB/wGjKZCDKWgB/wGjMJB5KZoB/wGjMJB5KcwB
/wGjMJB5Kf4B/wGjMJB5KjAB/wGjMpBvKmIB/wGjMpBvKpQB/wGjMpBvKsYB/wGjMpBvKvgB/wGjMpBvKyoB/wGjMZBkK1wB/wGjMZBkK44B
/wGjMZBkK8AB/wGjMZBkK/IB/wGjMZBkLCMB
/wGjMZBkLFYB+wGjJpB3LIcBzwGjJZChLLoBjAGjHZDcLOwBQQGjDJEkLR4A8QGjDJEkLVAAAACjDJEkLYIAAAA=</BDB>
</BIR>

Implementation

The SigObj object has been extended to provide conversions between FSS and ISO formats. As a security measure a signature collected by Wacom
Signature Capture can only be saved as either FSS or ISO, not both. However after importing an ISO signature it can be saved in the FSS format. The
option to encrypt the ISO signature data is included. The following table indicates the import/export options available:

Originating Source Can export as ISO Can save as FSS

Wacom Signature Capture one or the other, but not both

FSS (originating from Wacom Signature Capture) -

FSS (saved from ISO)

ISO

Note that calling RenderBitmap with the option RenderEncodeData will effectively export FSS to the bitmap. To avoid attempting the output of both ISO
and FSS formats the RenderEncodeData option will need to be avoided when exporting the ISO format.

API

Additions to flSigCOM for ISO support:

Classes

AdditionalImportIsoData

Enumerator Types

ImportIsoFlags

ExportIsoFlags

FlSigCOM: SigObj

Method

ImportIso

ExportIso

Enumeration Types:

ImportIsoFlags

Specifies the ISO format expected for import.

Name Value Description

ImportIsoFlag_iso19784_7_binary 1 Binary format ISO

ImportIsoFlag_iso19785_3_xml 2 XML fomat ISO

ImportIsoFlag_iso19784_7_encrypted_binary 3 Binary encrypted ISO

ImportIsoFlag_iso19784_7_encrypted_text 4 Base64 encrypted ISO

ExportIsoFlags

Specifies the exported ISO format.

Name Value Description

ExportIsoFlag_iso19784_7_binary 1 Binary format ISO

ExportIsoFlag_iso19785_3_xml 2 XML fomat ISO

ExportIsoFlag_iso19784_7_encrypted_binary 3 Binary encrypted ISO

ExportIsoFlag_iso19784_7_encrypted_text 4 Base64 encrypted ISO

Class:

FlSigCOM: : AdditionalImportIsoData

Summary

Property

Who

Why

When

TimeZoneOffset

ExtraData

Property Type SigObj Property Description

Who String Specifies the name of signatory of the imported signature.

Why String Specifies the reason for signing of the imported signature.

When DATE Specifies the local time and date when the signature was captured.
An OLE Automation Date data type is expected.
Note that to supply a date in JavaScript the type must be explicitly converted, for example:

additionalData.When = (new Date(2018,6-1,27, 11,0,0)).getVarDate();
 // 27-06-2018 11:00:00

TimeZoneOffset Long Time zone offset in MINUTES to UTC.
For example -60 for UK BST.

ExtraData String ExtraData is a parameterized property that allows the client to store additional data within the
signature
object after capture. (See SigObj propert ExtraData)
For example:

additionalData.ExtraData("Key1") = "value for Key1";
additionalData.ExtraData("Key2") = "value for Key2";

FlSigCOM: ISO methods

ImportIsoData

Reads an ISO format signature into the signature object.

ImportIso(iso, importIsoFlags, additionalIsoData)

Parameters

iso Variant ISO data: String or Byte Array

When the ImportIsoFlag_iso19785_3_xml flag is used, the variant iso is expected to be a
string. While the whole document is scanned for compliance, only the root BIR is
accessed
and it is assumed the BDB block is not encrypted.

If the ImportIsoFlag_iso19784_7_binary is used, the variant iso is expected to be a BYTE
[].
Additional data within the BDB block is ignored.

importIsoFlags enum type ImportIsoFlags, specifies the ISO format expected for import:

ImportIsoFlag_iso19784_7_binary
ImportIsoFlag_iso19785_3_xml
ImportIsoFlag_iso19784_7_encrypted_binary
ImportIsoFlag_iso19784_7_encrypted_text

additionalIsoData object AdditionalImportData

Return Value: ImportIsoRetVal

When the ImportIsoFlag_iso19784_7_encrypted_binary flag is used, the variant iso is expected to be a BYTE[] containing encrypted iso19784_7
binary data. The appropriate decryption key must be set, via SetProperty, before calling ImportISO

When the ImportIsoFlag_iso19784_7_encrypted_text flag is used, the variant iso is expected to be a string containing base64-encoded encrypted
iso19784_7 binary data. As for ImportIsoFlag_iso19784_7_encrypted_binary, the decryption key must be set before calling ImportISO.

ImportIsoRetVal Type SigObj Property Description

Succeeded Bool True if call was successful, otherwise False

DiagnosticMessage String Plain text error message

DiagnosticCode String Plain text error code..

The diagnostic messages are not localised and are intended for use by Wacom developers in the case of support being needed.

ExportIsoData

Creates an ISO format output of the current signature.
Export is only allowed if the SigObj has not been loaded from an FSS, or been saved as FSS (by accessing SigData or SigText). Either the BDB binary or
a minimal XML wrapper can be retrieved.
Attempting a disallowed export will result in an exception being thrown.

ExportIso(exportIsoFlags)

Parameters

exportIsoFlags enum type exportIsoFlags, specifies the ISO format expected for import:

ExportIsoFlag_iso19784_7_binary
ExportIsoFlag_iso19785_3_xml
ExportIsoFlag_iso19784_7_encrypted_binary
ExportIsoFlag_iso19784_7_encrypted_text

For ExportIsoFlag_iso19784_7_encrypted_binary and ExportIsoFlag_iso19784_7_encrypted_text, An encryption key must be set via SetProperty prior to
calling ExportIso

Return Value: iso (or exception)

iso binary BDB binary format ISO

iso xml BDB xml format ISO

iso encrypted binary BDB binary encrypted format ISO

iso Base64 encrypted BDB Base64 encrypted format ISO

	Signature Library - COM API

